Garbe C, Amaral T, Peris K, et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics - Update 2024. Eur J Cancer. 2025;215:115152.
Siegel RL, Kratzer TB, Giaquinto AN, et al. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10–45.
PubMed PubMed Central Google Scholar
Mohammed NBB, Shil RK, Dimitroff CJ. Melanoma Glycome Regulates the Pro-Oncogenic Properties of Extracellular Galectin-3. Int J Mol Sci. 2025;26(10):4882.
CAS PubMed PubMed Central Google Scholar
Villani A, Potestio L, Fabbrocini G, et al. The treatment of advanced melanoma: therapeutic update. Int J Mol Sci. 2022;23(12):6388.
CAS PubMed PubMed Central Google Scholar
Krall AJ, Reinhardt F, Mercury AO, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci Transl Med. 2018;10(436):3464.
Weiss SA, Wolchok JD, Sznol M. Immunotherapy of Melanoma: Facts and Hopes. Clin Cancer Res. 2019;25(17):5191–201.
CAS PubMed PubMed Central Google Scholar
Abbott M, Ustoyev Y. Cancer and the Immune System: The History and Background of Immunotherapy. Semin Oncol Nurs. 2019;35(5):150923.
Yap TA, Parkes EE, Peng W, et al. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021;11(6):1368–97.
CAS PubMed PubMed Central Google Scholar
Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–96.
CAS PubMed PubMed Central Google Scholar
Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov. 2022;21(4):261–82.
CAS PubMed PubMed Central Google Scholar
Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11(9):509–24.
Han G, Noh D, Lee H, Lee S, Kim S, Yoon HY, Lee SH. mRNA therapeutics in cancer immunotherapy. Mol Cancer. 2023;20(1):69–69.
Sautès-Fridman C, Petitprez F, Calderaro J, et al. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–25.
Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.
Riedel S. Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent). 2005;18(1):21–5.
Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. Clin Orthop Relat Res. 1991;262:3–11.
Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–8.
Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma A preliminary report. N Engl J Med. 1988;319(25):1676–80.
Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.
CAS PubMed PubMed Central Google Scholar
Nabhan C. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(20):1966–7.
Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother Sci. 2013;342(6165):1432–3.
Kamali MJ, Salehi M, Fath MK. Advancing personalized immunotherapy for melanoma: integrating immunoinformatics in multi-epitope vaccine development, neoantigen identification via NGS, and immune simulation evaluation. Comput Biol Med. 2025;188:109885.
Kayraklioglu N, Horuluoglu B, Klinman DM. CpG Oligonucleotides as Vaccine Adjuvants. Methods Mol Biol. 2021;2197:51–85.
Jia L, Qin Y, Li X, et al. STING-activating layered double hydroxide nano-adjuvants for enhanced cancer immunotherapy. Biomaterials. 2025;321:123294.
Wang EY, Sarmadi M, Ying B, et al. Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines. Biomaterials. 2023;303: 122345.
Chen X, Zhao M, Zheng L, et al. Nanovehicles for delivery of antigens and adjuvants as cancer nanovaccines. J Mater Chem B. 2025;13(22):6276–98.
Chiarella P, Massi E, De Robertis M, Sibilio A, Parrella P, Fazio VM, Signori E. Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther. 2008;8(11):1645–57.
van Drunen Littel-van den Hurk S, Hannaman D 2010 Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 9(5):503–17
Kisakov DN, Belyakov IM, Kisakova LA, et al. The use of electroporation to deliver DNA-based vaccines. Expert Rev Vaccines. 2024;23(1):102–23.
Luo X, McAndrews KM, Arian KA, et al. Development of an engineered extracellular vesicles-based vaccine platform for combined delivery of mRNA and protein to induce functional immunity. J Control Release. 2024;374:550–62.
CAS PubMed PubMed Central Google Scholar
Wang J, Huang S, Wei H, et al. A dissolvable microneedle platform for the delivery of tumor-derived total RNA nanovaccines for enhanced tumor immunotherapy. Acta Biomater. 2025;1(199):120–31.
Barbuto JA, Ensina LF, Neves AR, et al. Dendritic cell-tumor cell hybrid vaccination for metastatic cancer. Cancer Immunol Immunother. 2004;53(12):1111–8.
PubMed PubMed Central Google Scholar
Lotem M, Merims S, Frank S, et al. Adjuvant autologous melanoma vaccine for macroscopic stage III disease: survival, biomarkers, and improved response to CTLA-4 blockade. J Immunol Res. 2016;2016:8121985.
PubMed PubMed Central Google Scholar
Lotem M, Machlenkin A, Hamburger T, et al. Autologous melanoma vaccine induces antitumor and self-reactive immune responses that affect patient survival and depend on MHC class II expression on vaccine cells. Clin Cancer Res. 2009;15(15):4968–77.
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4(1):7.
PubMed PubMed Central Google Scholar
Zhang X, Cui H, Zhang W, Li Z, Gao J. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact Mater. 2023;22(491):517.
Ahmed KK, Geary SM, Salem AK. Surface engineering tumor cells with adjuvant-loaded particles for use as cancer vaccines. J Control Release. 2017;28(248):1–9.
Kwiatkowska-Borowczyk E, Czerwińska P, Mackiewicz J, et al. Whole cell melanoma vaccine genetically modified to stem cells like phenotype generates specific immune responses to ALDH1A1 and long-term survival in advanced melanoma patients. Oncoimmunology. 2018;7(11):e1509821.
PubMed PubMed Central Google Scholar
Czerwinska P, Rucinski M, Wlodarczyk N, et al. Therapeutic melanoma vaccine with cancer stem cell phenotype represses exhaustion and maintains antigen-specific T cell stemness by up-regulating BCL6. Oncoimmunology. 2020;9(1):1710063.
PubMed PubMed Central Google Scholar
Mackiewicz J, Karczewska-Dzionk A, Laciak M, et al. Whole cell therapeutic vaccine modified with Hyper-IL6 for combinational treatment of nonresected advanced melanoma. Medicine (Baltimore). 2015;94(21):e853.
Mackiewicz A, Mackiewicz J, Wysocki PJ, et al. Long-term survival of high-risk melanoma patients immunized with a Hyper-IL-6-modified allogeneic whole-cell vaccine after complete resection. Expert Opin Investig Drugs. 2012;21(6):773–83.
Datta J, Berk E, Cintolo JA, Xu S, Roses RE, Czerniecki BJ. Rationale for a multimodality strategy to enhance the efficacy of dendritic cell-based cancer immunotherapy. Front Immunol. 2015;6:271.
Comments (0)