Saitou, M. & Yamaji, M. Primordial germ cells in mice. Cold Spring Harb. Perspect. Biol. 4, a008375 (2012).
Article PubMed PubMed Central Google Scholar
Reik, W. & Surani, M. A. Germline and pluripotent stem cells. Cold Spring Harb. Perspect. Biol. 7, a019422 (2015).
Article PubMed PubMed Central Google Scholar
Wen, L. & Tang, F. Human germline cell development: from the perspective of single-cell sequencing. Mol. Cell 76, 320–328 (2019).
Article CAS PubMed Google Scholar
Shimada, R. & Ishiguro, K. Cell cycle regulation for meiosis in mammalian germ cells. J. Reprod. Dev. 69, 139–146 (2023).
Article CAS PubMed PubMed Central Google Scholar
Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).
Article CAS PubMed PubMed Central Google Scholar
Guo, H. et al. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells. Cell Res. 27, 165–183 (2017).
Article CAS PubMed Google Scholar
Brick, K. et al. Extensive sex differences at the initiation of genetic recombination. Nature 561, 338–342 (2018).
Article CAS PubMed PubMed Central Google Scholar
Hill, P. W. S. et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555, 392–396 (2018).
Article CAS PubMed PubMed Central Google Scholar
Li, J. et al. Accurate annotation of accessible chromatin in mouse and human primordial germ cells. Cell Res. 28, 1077–1089 (2018).
Article CAS PubMed PubMed Central Google Scholar
Li, L. et al. Dissecting the epigenomic dynamics of human fetal germ cell development at single-cell resolution. Cell Res. 31, 463–477 (2021).
Article CAS PubMed Google Scholar
Baudat, F., Imai, Y. & de Massy, B. Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794–806 (2013).
Article CAS PubMed Google Scholar
Yamada, T. & Ohta, K. Initiation of meiotic recombination in chromatin structure. J. Biochem. 154, 107–114 (2013).
Article CAS PubMed Google Scholar
Lam, I. & Keeney, S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol. 7, a016634 (2015).
Article PubMed Central Google Scholar
Scherthan, H. A bouquet makes ends meet. Nat. Rev. Mol. Cell Biol. 2, 621–627 (2001).
Article CAS PubMed Google Scholar
Wang, L., Wu, B., Ma, Y., Ren, Z. & Li, W. The blooming of an old story on the bouquet. Biol. Reprod. 107, 289–300 (2022).
Lynn, A., Ashley, T. & Hassold, T. Variation in human meiotic recombination. Annu. Rev. Genomics Hum. Genet. 5, 317–349 (2004).
Article CAS PubMed Google Scholar
Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature 569, 345–354 (2019).
Article CAS PubMed Google Scholar
Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).
Article CAS PubMed Google Scholar
Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).
Article CAS PubMed Google Scholar
Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).
Article CAS PubMed Google Scholar
Wang, Y. et al. Reprogramming of meiotic chromatin architecture during spermatogenesis. Mol. Cell 73, 547–561 (2019).
Article CAS PubMed Google Scholar
Alavattam, K. G. et al. Attenuated chromatin compartmentalization in meiosis and its maturation in sperm development. Nat. Struct. Mol. Biol. 26, 175–184 (2019).
Article CAS PubMed PubMed Central Google Scholar
Patel, L. et al. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat. Struct. Mol. Biol. 26, 164–174 (2019).
Article CAS PubMed PubMed Central Google Scholar
Vara, C. et al. Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep. 28, 352–367 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zuo, W. et al. Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment. Nat. Commun. 12, 5827 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zickler, D. & Kleckner, N. Meiosis: dances between homologs. Annu. Rev. Genet. 57, 1–63 (2023).
Article CAS PubMed Google Scholar
Zhou, T., Zhang, R. & Ma, J. The 3D genome structure of single cells. Annu. Rev. Biomed. Data Sci. 4, 21–41 (2021).
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
Article CAS PubMed PubMed Central Google Scholar
Liu, Z. et al. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 380, 1070–1076 (2023).
Article CAS PubMed Google Scholar
Qu, J. et al. Simultaneous profiling of chromatin architecture and transcription in single cells. Nat. Struct. Mol. Biol. 30, 1393–1402 (2023).
Article CAS PubMed Google Scholar
Zhou, T. et al. GAGE-seq concurrently profiles multiscale 3D genome organization and gene expression in single cells. Nat. Genet. 56, 1701–1711 (2024).
Article CAS PubMed PubMed Central Google Scholar
Wu, H. et al. Simultaneous single-cell three-dimensional genome and gene expression profiling uncovers dynamic enhancer connectivity underlying olfactory receptor choice. Nat. Methods 21, 974–982 (2024).
Comments (0)