Glycerol mediates crosstalk between metabolism and trafficking through the golgin Imh1

Klumperman, J. Architecture of the mammalian Golgi. Cold Spring Harb. Perspect. Biol. 3, a005181 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Munro, S. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb. Perspect. Biol. 3, a005256 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Lowe, M. The physiological functions of the golgin vesicle tethering proteins. Front. Cell Dev. Biol. 7, 94 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Witkos, T. M. & Lowe, M. The golgin family of coiled-coil tethering proteins. Front Cell Dev. Biol. 3, 86 (2015).

PubMed  Google Scholar 

Panic, B., Perisic, O., Veprintsev, D. B., Williams, R. L. & Munro, S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol. Cell 12, 863–874 (2003).

Article  CAS  PubMed  Google Scholar 

Barr, F. A. & Short, B. Golgins in the structure and dynamics of the Golgi apparatus. Curr. Opin. Cell Biol. 15, 405–413 (2003).

Article  CAS  PubMed  Google Scholar 

Lu, L. & Hong, W. Interaction of Arl1–GTP with GRIP domains recruits autoantigens golgin-97 and golgin-245/p230 onto the Golgi. Mol. Biol. Cell 14, 3767–3781 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, C. J. & Lee, F. J. Multiple activities of Arl1 GTPase in the trans-Golgi network. J. Cell Sci. 130, 1691–1699 (2017).

Article  CAS  PubMed  Google Scholar 

Tsai, P. C., Hsu, J. W., Liu, Y. W., Chen, K. Y. & Lee, F. J. Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Proc. Natl Acad. Sci. USA 110, E668–E677 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, K. Y. et al. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J. Cell Sci. 123, 3478–3489 (2010).

Article  CAS  PubMed  Google Scholar 

Sztul, E. et al. Arf GTPases and their GEFs and GAPs: concepts and challenges. Mol. Biol. Cell 30, 1249–1271 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, K. Y., Tsai, P. C., Liu, Y. W. & Lee, F. J. Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi. J. Cell Sci. 125, 4586–4596 (2012).

CAS  PubMed  Google Scholar 

Wang, Y.-H. et al. Golgin Imh1 and GARP complex cooperate to restore the impaired SNARE recycling transport induced by ER stress. Cell Rep. 38, 110488 (2022).

Article  CAS  PubMed  Google Scholar 

Hsu, J. W. et al. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p. Proc. Natl Acad. Sci. USA 113, E1683–E1690 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai, H. J. et al. Hypo-osmotic-like stress underlies general cellular defects of aneuploidy. Nature 570, 117–121 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blomberg, A. Yeast osmoregulation—glycerol still in pole position. FEMS Yeast Res. 22, foac035 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Levin, D. E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol. Biol. Rev. 69, 262–291 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol. Biol. Rev. 66, 300–372 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vagenende, V., Yap, M. G. & Trout, B. L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48, 11084–11096 (2009).

Article  CAS  PubMed  Google Scholar 

Gekko, K. & Timasheff, S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol–water mixtures. Biochemistry 20, 4667–4676 (1981).

Article  CAS  PubMed  Google Scholar 

Bolen, D. W. & Baskakov, I. V. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310, 955–963 (2001).

Article  CAS  PubMed  Google Scholar 

Gekko, K. & Timasheff, S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20, 4677–4686 (1981).

Article  CAS  PubMed  Google Scholar 

Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J. & Kopito, R. R. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638 (1996).

Article  CAS  PubMed  Google Scholar 

Bradbury, S. L. & Jakoby, W. B. Glycerol as an enzyme-stabilizing agent: effects on aldehyde dehydrogenase. Proc. Natl Acad. Sci. USA 69, 2373–2376 (1972).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corrêa, F. & Farah, C. S. Different effects of trifluoroethanol and glycerol on the stability of tropomyosin helices and the head-to-tail complex. Biophys. J. 92, 2463–2475 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Klein, M., Swinnen, S., Thevelein, J. M. & Nevoigt, E. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ. Microbiol. 19, 878–893 (2017).

Article  CAS  PubMed  Google Scholar 

Ram, A. F. et al. Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J. Bacteriol. 180, 1418–1424 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Futagami, T. et al. Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans. Eukaryot. Cell 10, 1504–1515 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petelenz-Kurdziel, E. et al. Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLoS Comput. Biol. 9, e1003084 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cronwright, G. R., Rohwer, J. M. & Prior, B. A. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68, 4448–4456 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toh, T.-H. et al. Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae. FEMS Yeast Res. 1, 205–211 (2001).

CAS 

Comments (0)

No login
gif