Klumperman, J. Architecture of the mammalian Golgi. Cold Spring Harb. Perspect. Biol. 3, a005181 (2011).
Article PubMed PubMed Central Google Scholar
Munro, S. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb. Perspect. Biol. 3, a005256 (2011).
Article PubMed PubMed Central Google Scholar
Lowe, M. The physiological functions of the golgin vesicle tethering proteins. Front. Cell Dev. Biol. 7, 94 (2019).
Article PubMed PubMed Central Google Scholar
Witkos, T. M. & Lowe, M. The golgin family of coiled-coil tethering proteins. Front Cell Dev. Biol. 3, 86 (2015).
Panic, B., Perisic, O., Veprintsev, D. B., Williams, R. L. & Munro, S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol. Cell 12, 863–874 (2003).
Article CAS PubMed Google Scholar
Barr, F. A. & Short, B. Golgins in the structure and dynamics of the Golgi apparatus. Curr. Opin. Cell Biol. 15, 405–413 (2003).
Article CAS PubMed Google Scholar
Lu, L. & Hong, W. Interaction of Arl1–GTP with GRIP domains recruits autoantigens golgin-97 and golgin-245/p230 onto the Golgi. Mol. Biol. Cell 14, 3767–3781 (2003).
Article CAS PubMed PubMed Central Google Scholar
Yu, C. J. & Lee, F. J. Multiple activities of Arl1 GTPase in the trans-Golgi network. J. Cell Sci. 130, 1691–1699 (2017).
Article CAS PubMed Google Scholar
Tsai, P. C., Hsu, J. W., Liu, Y. W., Chen, K. Y. & Lee, F. J. Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Proc. Natl Acad. Sci. USA 110, E668–E677 (2013).
Article CAS PubMed PubMed Central Google Scholar
Chen, K. Y. et al. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J. Cell Sci. 123, 3478–3489 (2010).
Article CAS PubMed Google Scholar
Sztul, E. et al. Arf GTPases and their GEFs and GAPs: concepts and challenges. Mol. Biol. Cell 30, 1249–1271 (2019).
Article CAS PubMed PubMed Central Google Scholar
Chen, K. Y., Tsai, P. C., Liu, Y. W. & Lee, F. J. Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi. J. Cell Sci. 125, 4586–4596 (2012).
Wang, Y.-H. et al. Golgin Imh1 and GARP complex cooperate to restore the impaired SNARE recycling transport induced by ER stress. Cell Rep. 38, 110488 (2022).
Article CAS PubMed Google Scholar
Hsu, J. W. et al. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p. Proc. Natl Acad. Sci. USA 113, E1683–E1690 (2016).
Article CAS PubMed PubMed Central Google Scholar
Tsai, H. J. et al. Hypo-osmotic-like stress underlies general cellular defects of aneuploidy. Nature 570, 117–121 (2019).
Article CAS PubMed PubMed Central Google Scholar
Blomberg, A. Yeast osmoregulation—glycerol still in pole position. FEMS Yeast Res. 22, foac035 (2022).
Article PubMed PubMed Central Google Scholar
Levin, D. E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol. Biol. Rev. 69, 262–291 (2005).
Article CAS PubMed PubMed Central Google Scholar
Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol. Biol. Rev. 66, 300–372 (2002).
Article CAS PubMed PubMed Central Google Scholar
Vagenende, V., Yap, M. G. & Trout, B. L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48, 11084–11096 (2009).
Article CAS PubMed Google Scholar
Gekko, K. & Timasheff, S. N. Mechanism of protein stabilization by glycerol: preferential hydration in glycerol–water mixtures. Biochemistry 20, 4667–4676 (1981).
Article CAS PubMed Google Scholar
Bolen, D. W. & Baskakov, I. V. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310, 955–963 (2001).
Article CAS PubMed Google Scholar
Gekko, K. & Timasheff, S. N. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20, 4677–4686 (1981).
Article CAS PubMed Google Scholar
Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J. & Kopito, R. R. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638 (1996).
Article CAS PubMed Google Scholar
Bradbury, S. L. & Jakoby, W. B. Glycerol as an enzyme-stabilizing agent: effects on aldehyde dehydrogenase. Proc. Natl Acad. Sci. USA 69, 2373–2376 (1972).
Article CAS PubMed PubMed Central Google Scholar
Corrêa, F. & Farah, C. S. Different effects of trifluoroethanol and glycerol on the stability of tropomyosin helices and the head-to-tail complex. Biophys. J. 92, 2463–2475 (2007).
Article PubMed PubMed Central Google Scholar
Klein, M., Swinnen, S., Thevelein, J. M. & Nevoigt, E. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ. Microbiol. 19, 878–893 (2017).
Article CAS PubMed Google Scholar
Ram, A. F. et al. Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J. Bacteriol. 180, 1418–1424 (1998).
Article CAS PubMed PubMed Central Google Scholar
Futagami, T. et al. Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans. Eukaryot. Cell 10, 1504–1515 (2011).
Article CAS PubMed PubMed Central Google Scholar
Petelenz-Kurdziel, E. et al. Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLoS Comput. Biol. 9, e1003084 (2013).
Article CAS PubMed PubMed Central Google Scholar
Cronwright, G. R., Rohwer, J. M. & Prior, B. A. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 68, 4448–4456 (2002).
Article CAS PubMed PubMed Central Google Scholar
Toh, T.-H. et al. Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae. FEMS Yeast Res. 1, 205–211 (2001).
Comments (0)