Broder, C. C. & Wong, K. T. in Neurotropic Viral Infections: Volume 1: Neurotropic RNA Viruses (ed. Reiss, C. S.) (Springer, 2016).
Lamb, R. A. & Parks, G. D. Paramyxoviridae: The Viruses and Their Replication 5th edn (Lippincott, Williams, and Wilkins, 2007).
Amaya, M. & Broder, C. C. Vaccines to emerging viruses: Nipah and Hendra. Annu. Rev. Virol. 7, 447–473 (2020).
Article CAS PubMed PubMed Central Google Scholar
Luby, S. & Gurley, E. in Global Virology I—Identifying and Investigating Viral Diseases (eds Shapshak, P. et al.) (Springer, 2015).
Aguilar, H. C. & Lee, B. Emerging paramyxoviruses: molecular mechanisms and antiviral strategies. Expert Rev. Mol. Med. 13, e6 (2011).
Article PubMed PubMed Central Google Scholar
Negrete, O. A. et al. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436, 401 (2005).
Article CAS PubMed Google Scholar
Zhu, Z. et al. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J. Infect. Dis. 197, 846–853 (2008).
Article CAS PubMed Google Scholar
Bossart, K. N. et al. A neutralizing human monoclonal antibody protects African green monkeys from Hendra virus challenge. Sci. Transl. Med. 3, 105ra103 (2011).
Article PubMed PubMed Central Google Scholar
Bossart, K. N. et al. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathog. 5, e1000642 (2009).
Article PubMed PubMed Central Google Scholar
Geisbert, T. W. et al. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci. Transl. Med. 6, 242ra282 (2014).
Mire, C. E. et al. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: implications for antibody therapy. Sci. Rep. 6, 30916 (2016).
Article CAS PubMed PubMed Central Google Scholar
Playford, E. G. et al. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. Lancet Infect. Dis. 20, 445–454 (2020).
Article CAS PubMed Google Scholar
Lamb, R. A., Paterson, R. G. & Jardetzky, T. S. Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 344, 30–37 (2006).
Article CAS PubMed Google Scholar
Smith, E. C., Popa, A., Chang, A., Masante, C. & Dutch, R. E. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. FEBS J. 276, 7217–7227 (2009).
Article CAS PubMed PubMed Central Google Scholar
Avanzato, V. A. et al. A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability at the fusion glycoprotein apex. Proc. Natl Acad. Sci. USA 116, 25057 (2019).
Article CAS PubMed PubMed Central Google Scholar
Dang, H. V. et al. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nat. Struct. Mol. Biol. 26, 980–987 (2019).
Article CAS PubMed PubMed Central Google Scholar
Dang, H. V. et al. Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nat. Struct. Mol. Biol. 28, 426–434 (2021).
Article CAS PubMed Google Scholar
Byrne, P. O. et al. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein. Nat. Commun. 14, 1494 (2023).
Article CAS PubMed PubMed Central Google Scholar
Mire, C. E. et al. A cross-reactive humanized monoclonal antibody targeting fusion glycoprotein function protects ferrets against lethal Nipah virus and Hendra virus infection. J. Infect. Dis. 221, S471–S479 (2020).
Article CAS PubMed Google Scholar
Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2021).
Roessler, A., Riepler, L., Bante, D., von Laer, D. & Kimpel, J. SARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent persons. N. Engl. J. Med. 386, 698–700 (2022).
VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 28, 490–495 (2022).
Article CAS PubMed PubMed Central Google Scholar
Borisevich, V. et al. Escape from monoclonal antibody neutralization affects Henipavirus fitness in vitro and in vivo. J. Infect. Dis. 213, 448–455 (2016).
Article CAS PubMed Google Scholar
Xu, K. et al. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody. PLoS Pathog. 9, e1003684 (2013).
Article PubMed PubMed Central Google Scholar
Doyle, M. P. et al. Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Rep. 36, 109628 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zeitlin, L. et al. Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates. Sci. Transl. Med. 16, eadl2055 (2024).
Article CAS PubMed Google Scholar
Wang, J. et al. A new Hendra virus genotype found in Australian flying foxes. Virol. J. 18, 197 (2021).
Article CAS PubMed PubMed Central Google Scholar
Bradel-Tretheway, B. G. et al. Nipah and Hendra virus glycoproteins induce comparable homologous but distinct heterologous fusion phenotypes. J. Virol. 93, e00577-19 (2019).
Article PubMed PubMed Central Google Scholar
Valenzuela Nieto, G. et al. Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci. Rep. 11, 3318 (2021).
Article CAS PubMed PubMed Central Google Scholar
Xu, K. et al. Crystal structure of the pre-fusion Nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly. PLoS Pathog. 11, e1005322 (2015).
Article PubMed PubMed Central Google Scholar
Byrne, Patrick et al. Prefusion stabilization of the Hendra and Langya virus F proteins. J. Virol. 98, e0137223 (2024).
Isaacs, A. et al. Combinatorial F–G immunogens as Nipah and respiratory syncytial virus vaccine candidates. Viruses 13, 1942 (2021).
Article CAS PubMed PubMed Central Google Scholar
Li, Z. et al. An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nat. Immunol. 23, 423–430 (2022).
Article CAS PubMed Google Scholar
Moirangthem, R. et al. Dual neutralization of influenza virus hemagglutinin and neuraminidase by a bispecific antibody leads to improved antiviral activity. Mol. Ther. 32, 3712–3728 (2024).
Comments (0)