Robert, P., Manera, V., Derreumaux, A., Ferrandez, Y.M.M., Leone, E., Fabre, R., and Bourgeois, J., Efficacy of a Web app for cognitive training (MeMo) regarding cognitive and behavioral performance in people with neurocognitive disorders: Randomized controlled trial, J. Med. Internet Res., 2020, vol. 22, no. 3, p. e17167. https://doi.org/10.2196/17167
Article PubMed PubMed Central Google Scholar
Nichols, E., Steinmetz, J.D., Vollset, S.E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T.T., et al., Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019, Lancet Public Health, 2022, vol. 7, no. 2, pp. e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8
Zhou, B., Perel, P., Mensah, G.A., and Ezzati, M., Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension, Nat. Rev. Cardiol., 2021, vol. 18, no. 11, pp. 785–802. https://doi.org/10.1038/s41569-021-00559-8
Article PubMed PubMed Central Google Scholar
Yamada, T., Kimura-Koyanagi, M., Sakaguchi, K., Ogawa, W., and Tamori, Y., Obesity and risk for its comorbidities diabetes, hypertension, and dyslipidemia in Japanese individuals aged 65 years, Sci. Rep., 2023, vol. 13, no. 1, p. 2346. https://doi.org/10.1038/s41598-023-29276-7
Article CAS PubMed PubMed Central Google Scholar
Li, H., Hu, Y.J., Lin, H., Xia, H., Guo, Y., and Wu, F., Hypertension and comorbidities in rural and urban Chinese older people: An epidemiological subanalysis from the SAGE study, Am. J. Hypertens., 2021, vol. 34, no. 2, pp. 183–189. https://doi.org/10.1093/ajh/hpaa146
Article CAS PubMed Google Scholar
Feng, Z.L., Glinskaya, E., Chen, H.T., Gong, S., Qiu, Y., Xu, J.M., and Yip, W.N., Long-term care system for older adults in China: Policy landscape, challenges, and future prospects, Lancet, 2020, vol. 396, no. 10259. pp. 1362–1372.https://doi.org/10.1016/S0140-6736(20)32136-X
Chen, S.M., Li, L.Y., Jiao, L.R., and Wang, C., Long-term care insurance and the future of healthy aging in China, Nat. Aging, 2023, vol. 3, no. 12, pp. 1465–1468. https://doi.org/10.1038/s43587-023-00540-9
Silcox, C., Zimlichmann, E., Huber, K., Rowen, N., Saunders, R., McClellan, M., Kahn, C.I.I.I., Salzberg, C.A., and Bates, D.W., The potential for artificial intelligence to transform healthcare: Perspectives from international health leaders, NPJ Digit. Med., 2024, vol. 7, no. 1, p. 88. https://doi.org/10.1038/s41746-024-01097-6
Article PubMed PubMed Central Google Scholar
Shickel, B., Tighe, P.J., Bihorac, A., and Rashidi, P., Deep EHR: A survey of recent advances in deep learning techniques for Electronic Health Record (EHR) Analysis, IEEE J. Biomed. Health Inform., 2018, vol. 22, no. 5. pp. 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063
Mei, S.Y. and Zhang, K., A machine learning framework for predicting drug–drug interactions, Sci. Rep., 2021, vol. 11, p. 17619. https://doi.org/10.1038/s41598-021-97193-8
Article CAS PubMed PubMed Central Google Scholar
Zhou, M.S., Zheng, C.L., and Xu, R., Combining phenome-driven drug–target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery, Bioinformatics, 2020, vol. 36, suppl. 1, p. 436–444. https://doi.org/10.1093/bioinformatics/btaa451
Datta, A., Flynn, N.R., Barnette, D.A., Woeltje, K.F., Miller, G.P., and Swamidass, S.J., Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort, PLoS Comput. Biol., 2021, vol. 17, no. 7, p. e1009053. https://doi.org/10.1371/journal.pcbi.1009053
Article CAS PubMed PubMed Central Google Scholar
Samal, L., Wright, A., Wong, B.T., Linder, J.A., and Bates, D.W., Leveraging electronic health records to support chronic disease management: The need for temporal data views, Inform. Prim. Care, 2011, vol. 19, no. 2, pp. 65–74. https://doi.org/10.14236/jhi.v19i2.797
Wu, Z.X., Feng, C., Hu, Y.S., Zhou, Y.C., Li, S.D., Zhang, S.L., Hu, Y.M., Chen, Y.H., Chao, H.Y., Ni, Q.Y., et al., HALD, a human aging and longevity knowledge graph for precision gerontology and geroscience analyses, Sci. Data, 2023, vol. 10, no. 1, p. 851. https://doi.org/10.1038/s41597-023-02781-0
Article PubMed PubMed Central Google Scholar
Horvath, S., DNA methylation age of human tissues and cell types, Genome Biol., 2015, vol. 14, no. 10, p. R115. https://doi.org/10.1186/gb-2013-14-10-r115
Lima, E.M., Ribeiro, A.H., Paixao, G.M.M., Ribeiro, M.H., Pinto-Filho, M.M., Gomes, P.R., Oliveira, D.M., Sabino, E.C., Duncan, B.B., Giatti, L., et al., Deep neural network-estimated electrocardiographic age as a mortality predictor, Nat. Commun., 2021, vol. 12, no. 1, p. 5117. https://doi.org/10.1038/s41467-021-25351-7
Article CAS PubMed PubMed Central Google Scholar
Fleischer, J.G., Schulte, R., Tsai, H.H., Tyagi, S., Ibarra, A., Shokhirev, M.N., Huang, L., Hetzer, M.W., and Navlakha, S., Predicting age from the transcriptome of human dermal fibroblasts, Genome Biol., 2018, vol. 19, no. 1, p. 221. https://doi.org/10.1186/s13059-018-1599-6
Article CAS PubMed PubMed Central Google Scholar
Lehallier, B., Gate, D., Schaum, N., Nanasi, T., Lee, S.E., Yousef, H., Losada, P.M., Berdnik, D., Keller, A., Verghese, J., et al., Undulating changes in human plasma proteome profiles across the lifespan, Nat. Med., 2019, vol. 25, no. 12, pp. 1843–1850. https://doi.org/10.1038/s41591-019-0673-2
Article CAS PubMed PubMed Central Google Scholar
Mishra, R. and Li, B., The application of artificial intelligence in the genetic study of Alzheimer’s disease, Aging Dis., 2020, vol. 11, no. 6, pp. 1567–1584. https://doi.org/10.14336/Ad.2020.0312
Article PubMed PubMed Central Google Scholar
Arya, S.S., Dias, S.B., Jelinek, H.F., Hadjileontiadis, L.J., and Pappa, A.M., The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics?, Biosens. Bioelectron., 2023, vol. 235, p. 115387. https://doi.org/10.1016/j.bios.2023.115387
Article CAS PubMed Google Scholar
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J., van Ginneken, B., and Sanchez, C.I., A survey on deep learning in medical image analysis, Med. Image Anal., 2017, vol. 42, pp. 60–88. https://doi.org/10.1016/j.media.2017.07.005
Lian, C., Liu, M., Zhang, J., and Shen, D., Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI, IEEE Trans. Pattern Anal. Mach. Intell., 2020, vol. 42, no. 4, pp. 880–893. https://doi.org/10.1109/TPAMI.2018.2889096
Rachmadi, M.F., Valdes-Hernandez, M.D.C., Makin, S., Wardlaw, J., and Komura, T., Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks, Med. Image Anal., 2020, vol. 63, p. 101712. https://doi.org/10.1016/j.media.2020.101712
Article PubMed PubMed Central Google Scholar
Patel, S., Park, H., Bonato, P., Chan, L., and Rodgers, M., A review of wearable sensors and systems with application in rehabilitation, J. Neuroeng. Rehabil., 2012, vol. 9, p. 21. https://doi.org/10.1186/1743-0003-9-21
Article PubMed PubMed Central Google Scholar
Al-Kaisey, A.M., Koshy, A.N., Ha, F.J., Spencer, R., Toner, L., Sajeev, J.K., Teh, A.W., Farouque, O., and Lim, H.S., Accuracy of wrist-worn heart rate monitors for rate control assessment in atrial fibrillation, Int. J. Cardiol., 2020, vol. 300, pp. 161–164. https://doi.org/10.1016/j.ijcard.2019.11.120
Piwek, L., Ellis, D.A., Andrews, S., and Joinson, A., The rise of consumer health wearables: Promises and barriers, PLoS Med., 2016, vol. 13, no. 2, p. e1001953. https://doi.org/10.1371/journal.pmed.1001953
Article PubMed PubMed Central Google Scholar
Kim, M.K., Rouphael, C., McMichael, J., Welch, N., and Dasarathy, S., Challenges in and opportunities for electronic health record-based data analysis and interpretation, Gut Liver, 2024, vol. 18, no. 2, pp. 201–208. https://doi.org/10.5009/gnl230272
Comments (0)