Artificial Intelligence in Gerontology: Data-Driven Health Management and Precision Medicine

Robert, P., Manera, V., Derreumaux, A., Ferrandez, Y.M.M., Leone, E., Fabre, R., and Bourgeois, J., Efficacy of a Web app for cognitive training (MeMo) regarding cognitive and behavioral performance in people with neurocognitive disorders: Randomized controlled trial, J. Med. Internet Res., 2020, vol. 22, no. 3, p. e17167. https://doi.org/10.2196/17167

Article  PubMed  PubMed Central  Google Scholar 

Nichols, E., Steinmetz, J.D., Vollset, S.E., Fukutaki, K., Chalek, J., Abd-Allah, F., Abdoli, A., Abualhasan, A., Abu-Gharbieh, E., Akram, T.T., et al., Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019, Lancet Public Health, 2022, vol. 7, no. 2, pp. e105–e125. https://doi.org/10.1016/S2468-2667(21)00249-8

Article  Google Scholar 

Zhou, B., Perel, P., Mensah, G.A., and Ezzati, M., Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension, Nat. Rev. Cardiol., 2021, vol. 18, no. 11, pp. 785–802. https://doi.org/10.1038/s41569-021-00559-8

Article  PubMed  PubMed Central  Google Scholar 

Yamada, T., Kimura-Koyanagi, M., Sakaguchi, K., Ogawa, W., and Tamori, Y., Obesity and risk for its comorbidities diabetes, hypertension, and dyslipidemia in Japanese individuals aged 65 years, Sci. Rep., 2023, vol. 13, no. 1, p. 2346. https://doi.org/10.1038/s41598-023-29276-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H., Hu, Y.J., Lin, H., Xia, H., Guo, Y., and Wu, F., Hypertension and comorbidities in rural and urban Chinese older people: An epidemiological subanalysis from the SAGE study, Am. J. Hypertens., 2021, vol. 34, no. 2, pp. 183–189. https://doi.org/10.1093/ajh/hpaa146

Article  CAS  PubMed  Google Scholar 

Feng, Z.L., Glinskaya, E., Chen, H.T., Gong, S., Qiu, Y., Xu, J.M., and Yip, W.N., Long-term care system for older adults in China: Policy landscape, challenges, and future prospects, Lancet, 2020, vol. 396, no. 10259. pp. 1362–1372.https://doi.org/10.1016/S0140-6736(20)32136-X

Article  PubMed  Google Scholar 

Chen, S.M., Li, L.Y., Jiao, L.R., and Wang, C., Long-term care insurance and the future of healthy aging in China, Nat. Aging, 2023, vol. 3, no. 12, pp. 1465–1468. https://doi.org/10.1038/s43587-023-00540-9

Article  PubMed  Google Scholar 

Silcox, C., Zimlichmann, E., Huber, K., Rowen, N., Saunders, R., McClellan, M., Kahn, C.I.I.I., Salzberg, C.A., and Bates, D.W., The potential for artificial intelligence to transform healthcare: Perspectives from international health leaders, NPJ Digit. Med., 2024, vol. 7, no. 1, p. 88. https://doi.org/10.1038/s41746-024-01097-6

Article  PubMed  PubMed Central  Google Scholar 

Shickel, B., Tighe, P.J., Bihorac, A., and Rashidi, P., Deep EHR: A survey of recent advances in deep learning techniques for Electronic Health Record (EHR) Analysis, IEEE J. Biomed. Health Inform., 2018, vol. 22, no. 5. pp. 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063

Article  PubMed  Google Scholar 

Mei, S.Y. and Zhang, K., A machine learning framework for predicting drug–drug interactions, Sci. Rep., 2021, vol. 11, p. 17619. https://doi.org/10.1038/s41598-021-97193-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, M.S., Zheng, C.L., and Xu, R., Combining phenome-driven drug–target interaction prediction with patients’ electronic health records-based clinical corroboration toward drug discovery, Bioinformatics, 2020, vol. 36, suppl. 1, p. 436–444. https://doi.org/10.1093/bioinformatics/btaa451

Article  CAS  Google Scholar 

Datta, A., Flynn, N.R., Barnette, D.A., Woeltje, K.F., Miller, G.P., and Swamidass, S.J., Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort, PLoS Comput. Biol., 2021, vol. 17, no. 7, p. e1009053. https://doi.org/10.1371/journal.pcbi.1009053

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samal, L., Wright, A., Wong, B.T., Linder, J.A., and Bates, D.W., Leveraging electronic health records to support chronic disease management: The need for temporal data views, Inform. Prim. Care, 2011, vol. 19, no. 2, pp. 65–74. https://doi.org/10.14236/jhi.v19i2.797

Article  PubMed  Google Scholar 

Wu, Z.X., Feng, C., Hu, Y.S., Zhou, Y.C., Li, S.D., Zhang, S.L., Hu, Y.M., Chen, Y.H., Chao, H.Y., Ni, Q.Y., et al., HALD, a human aging and longevity knowledge graph for precision gerontology and geroscience analyses, Sci. Data, 2023, vol. 10, no. 1, p. 851. https://doi.org/10.1038/s41597-023-02781-0

Article  PubMed  PubMed Central  Google Scholar 

Horvath, S., DNA methylation age of human tissues and cell types, Genome Biol., 2015, vol. 14, no. 10, p. R115. https://doi.org/10.1186/gb-2013-14-10-r115

Article  Google Scholar 

Lima, E.M., Ribeiro, A.H., Paixao, G.M.M., Ribeiro, M.H., Pinto-Filho, M.M., Gomes, P.R., Oliveira, D.M., Sabino, E.C., Duncan, B.B., Giatti, L., et al., Deep neural network-estimated electrocardiographic age as a mortality predictor, Nat. Commun., 2021, vol. 12, no. 1, p. 5117. https://doi.org/10.1038/s41467-021-25351-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fleischer, J.G., Schulte, R., Tsai, H.H., Tyagi, S., Ibarra, A., Shokhirev, M.N., Huang, L., Hetzer, M.W., and Navlakha, S., Predicting age from the transcriptome of human dermal fibroblasts, Genome Biol., 2018, vol. 19, no. 1, p. 221. https://doi.org/10.1186/s13059-018-1599-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lehallier, B., Gate, D., Schaum, N., Nanasi, T., Lee, S.E., Yousef, H., Losada, P.M., Berdnik, D., Keller, A., Verghese, J., et al., Undulating changes in human plasma proteome profiles across the lifespan, Nat. Med., 2019, vol. 25, no. 12, pp. 1843–1850. https://doi.org/10.1038/s41591-019-0673-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra, R. and Li, B., The application of artificial intelligence in the genetic study of Alzheimer’s disease, Aging Dis., 2020, vol. 11, no. 6, pp. 1567–1584. https://doi.org/10.14336/Ad.2020.0312

Article  PubMed  PubMed Central  Google Scholar 

Arya, S.S., Dias, S.B., Jelinek, H.F., Hadjileontiadis, L.J., and Pappa, A.M., The convergence of traditional and digital biomarkers through AI-assisted biosensing: A new era in translational diagnostics?, Biosens. Bioelectron., 2023, vol. 235, p. 115387. https://doi.org/10.1016/j.bios.2023.115387

Article  CAS  PubMed  Google Scholar 

Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J., van Ginneken, B., and Sanchez, C.I., A survey on deep learning in medical image analysis, Med. Image Anal., 2017, vol. 42, pp. 60–88. https://doi.org/10.1016/j.media.2017.07.005

Article  PubMed  Google Scholar 

Lian, C., Liu, M., Zhang, J., and Shen, D., Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI, IEEE Trans. Pattern Anal. Mach. Intell., 2020, vol. 42, no. 4, pp. 880–893. https://doi.org/10.1109/TPAMI.2018.2889096

Article  PubMed  Google Scholar 

Rachmadi, M.F., Valdes-Hernandez, M.D.C., Makin, S., Wardlaw, J., and Komura, T., Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks, Med. Image Anal., 2020, vol. 63, p. 101712. https://doi.org/10.1016/j.media.2020.101712

Article  PubMed  PubMed Central  Google Scholar 

Patel, S., Park, H., Bonato, P., Chan, L., and Rodgers, M., A review of wearable sensors and systems with application in rehabilitation, J. Neuroeng. Rehabil., 2012, vol. 9, p. 21. https://doi.org/10.1186/1743-0003-9-21

Article  PubMed  PubMed Central  Google Scholar 

Al-Kaisey, A.M., Koshy, A.N., Ha, F.J., Spencer, R., Toner, L., Sajeev, J.K., Teh, A.W., Farouque, O., and Lim, H.S., Accuracy of wrist-worn heart rate monitors for rate control assessment in atrial fibrillation, Int. J. Cardiol., 2020, vol. 300, pp. 161–164. https://doi.org/10.1016/j.ijcard.2019.11.120

Article  PubMed  Google Scholar 

Piwek, L., Ellis, D.A., Andrews, S., and Joinson, A., The rise of consumer health wearables: Promises and barriers, PLoS Med., 2016, vol. 13, no. 2, p. e1001953. https://doi.org/10.1371/journal.pmed.1001953

Article  PubMed  PubMed Central  Google Scholar 

Kim, M.K., Rouphael, C., McMichael, J., Welch, N., and Dasarathy, S., Challenges in and opportunities for electronic health record-based data analysis and interpretation, Gut Liver, 2024, vol. 18, no. 2, pp. 201–208. https://doi.org/10.5009/gnl230272

Article  PubMed  Google Scholar 

Comments (0)

No login
gif