Hetea, A., Cosconel, C., Stanescu, A.A.M., and Simionescu, A.A., Alcohol and psychoactive drugs in pregnancy, Maedica (București), 2019, vol. 14, no. 4, pp. 397–401. https://doi.org/10.26574/maedica.2019.14.4.397
Article PubMed PubMed Central Google Scholar
Borash, D.J., Teotonio, H., Rose, M.R., and Mueller, L.D., Density-dependent natural selection in Drosophila: correlations between feeding rate, development time and viability, J. Evol. Biol., 2000, vol. 13, pp. 181–187. https://doi.org/10.1046/j.1420-9101.2000.00167.x
Kolss, M., Vijendravarma, R.K., Schwaller, G., and Kawecki, T.J., Life-history consequences of adaptation to larval nutritional stress in Drosophila, Evolution, 2009, vol. 63, no. 9, pp. 2389–2401. https://doi.org/10.1111/j.1558-5646.2009.00718.x
McClure, K.D., French, R.L., and Heberlein, U., A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway, Dis. Model. Mech., 2011, vol. 4, no. 3, pp. 335–346. https://doi.org/10.1242/dmm.006411
Article CAS PubMed PubMed Central Google Scholar
Shenoi, V.N., Ali, S.Z., and Prasad, N.G., Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding, J. Evol. Biol., 2016, vol. 29, pp. 407–417. https://doi.org/10.1111/jeb.12795
Article CAS PubMed Google Scholar
Sharma, U., Pal, D., and Prasad, R., Alkaline phosphatase: an overview, Indian J. Clin. Biochem., 2014, vol. 29, no. 3, pp. 269–278. https://doi.org/10.1007/s12291-013-0408-y
Article CAS PubMed Google Scholar
Eguchi, M., Azuma, M., Yamamoto, H., and Takeda, S., in Isozymes: Structures, Functions and Use in Biology and Medicine, New York: Wiley–Liss, 1990, pp. 267–287.
Funk, C.J., Alkaline phosphatase activity in whitefly salivary glands and saliva, Arch. Insect Biochem. Physiol., 2001, vol. 46, no. 4, pp. 165–174. https://doi.org/10.1002/arch.1026
Article CAS PubMed Google Scholar
Yang, M.Y., Wang, Z., MacPherson, M., Dow, J.A., and Kaiser, K., A novel Drosophila alkaline phosphatase specific to the ellipsoid body of the adult brain and the lower Malpighian (renal) tubule, Genetics, 2000, vol. 154, no. 1, pp. 285–297. https://doi.org/10.1093/genetics/154.1.285
Article CAS PubMed PubMed Central Google Scholar
Cabrero, P., Pollock, V.P., Davies, S. A., and Dow, J.A., A conserved domain of alkaline phosphatase expression in the Malpighian tubules of dipteran insects, J. Exp. Biol., 2004, vol. 207, pp. 3299–3305. https://doi.org/10.1242/jeb.01156
Article CAS PubMed Google Scholar
Yi, S.X. and Adams, T.S., Age- and diapause-related acid and alkaline phosphatase activities in the intestine and malpighian tubules of the Colorado potato beetle, Leptinotarsa decemlineata (Say), Arch. Insect Biochem. Physiol., 2001, vol. 46, no. 3, pp. 152–163. https://doi.org/10.1002/arch.1025
Article CAS PubMed Google Scholar
Houk, E.J. and Hardy, J.L., Alkaline phosphatases of the mosquito, Culex tarsalis Coquillett, Comp. Biochem. Physiol. B, 1984, vol. 78, no. 2, pp. 303–310. https://doi.org/10.1016/0305-0491(84)90034-8
Article CAS PubMed Google Scholar
Igbokwe, E.C. and Mills, M., Electrophoretic variability in the phosphatase system of the yellow-fever mosquito, Aedes aegypti, Comp. Biochem. Physiol. B, 1982, vol. 73, no. 3, pp. 457–458. https://doi.org/10.1016/0305-0491(82)90058-x
Article CAS PubMed Google Scholar
Wright, T.R., Genetic of biogenic amines metabolism, sclerotisation and melanisation in Drosophila melanogaster, Adv. Genet., 1987, vol. 24, pp. 127–221.
Article CAS PubMed Google Scholar
Rauschenbach, I.Y., Serova, L.I., Timochina, I.S., Chentsova, N.A., and Schumnaja, L.V., Analysis of differences in dopamine content between two lines of Drosophila virilis in response to heat stress, J. Insect Physiol., 1993, vol. 39, pp. 761–767.
Sukhanova, M.Z., Grenback, L.G., Gruntenko, N.E., Khlebodarova, T.M., and Rauschenbach, I.Y., Alkaline phosphatase in Drosophila under heat stress, J. Insect Physiol., 1996, vol. 42, no. 2, pp. 161–165. https://doi.org/10.1016/0022-1910(95)00070-4
Burdina, E.V., Adonyeva, N.V., Karpova, E.K., Rauschenbach, I.Y., Menshanov, P.N., and Gruntenko, N.E., The effect of mild heat stress of different frequencies on the adaptability of Drosophila melanogaster females, Arch. Insect Biochem. Physiol., 2019, vol. 102, no. 4, p. e21619. https://doi.org/10.1002/arch.21619
Article CAS PubMed Google Scholar
Rauschenbach, I.Y., Neiroendokrinnaya regulyatsiya razvitiya nasekomykh v usloviyakh stressa: Genetiko-fiziologicheskie aspekty (Neuroendocrine Regulation of Insect Development under Stress: Genetic and Physiological Aspects), Moscow: Nauka, 1990.
Bogomolova, E.V., Rauschenbach, I.Y., Adonyeva, N.V., Alekseev, A.A., Faddeeva, N.V., and Gruntenko, N.E., Dopamine down-regulates activity of alkaline phosphatase in Drosophila: the role of D2-like receptors, J. Insect Physiol., 2010, vol. 56, no. 9, pp. 1155–1159. https://doi.org/10.1016/j.jinsphys.2010.03.014
Article CAS PubMed Google Scholar
Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics: Inference and Relationship, Griffin, C., Ed., London, 1961, vol. 2, 2nd ed., p. 312.
Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontologia Electronica, 2001, vol. 4, no. 1, p. 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Auld, S.K. and Tinsley, M.C., The evolutionary ecology of complex lifecycle parasites: Linking phenomena with mechanisms, Heredity (Edinburg), 2015, vol. 114, no. 2, pp. 125–132. https://doi.org/10.1038/hdy.2014.84
Article CAS PubMed Google Scholar
Marshall, D.J. and Morgan, S.G., Ecological and evolutionary consequences of linked life-history stages in the sea, Curr Biol., 2011, vol. 21, no. 18, pp. R718–R725. https://doi.org/10.1016/j.cub.2011.08.022
Article CAS PubMed Google Scholar
Stoks, R. and Córdoba-Aguilar, A., Evolutionary ecology of Odonata: A complex life cycle perspective, Annu. Rev. Entomol., 2012, vol. 57, pp. 249–265. https://doi.org/10.1146/annurev-ento-120710-100557
Article CAS PubMed Google Scholar
Schoch, R.R., Evolution of life cycles in early amphibians, Annu. Rev. Earth Plant Sci., 2009, vol. 37, pp. 135–162. https://doi.org/10.1146/annurev.earth.031208.100113
Moran, N.A., Adaptation and constraint in the complex life-cycles of animals, Annu. Rev. Ecol. Syst., 1994, vol. 25, pp. 573–600. https://doi.org/10.1146/annurev.es.25.110194.003041
Chaby, L.E., Why are there lasting effects from exposure to stress during development? An analysis of current models of early stress, Physiol. Behav., 2016, vol. 164 (Pt. A), pp. 164–181. https://doi.org/10.1016/j.physbeh.2016.05.032
Zhang, W., Chang, X.Q., Hoffmann, A., Zhang, S., and Ma, C.S., Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output, Sci. Rep., 2015, vol. 5, p. 10436. https://doi.org/10.1038/srep10436
Article PubMed PubMed Central Google Scholar
Rauschenbach, I.Y., Bogomolova, E.V., Gruntenko, N.E., Adonyeva, N.V., and Chentsova, N.A., Effects of juvenile hormone and 20-hydroxyecdysone on alkaline phosphatase activity in Drosophila under normal and heat stress conditions. J. Insect Physiol., 2007, vol. 53, pp. 587–591.
Article CAS PubMed Google Scholar
Wang, Z., Liu, S., Yang, B., and Liu, Z., Characterization of soluble and membrane-bound alkaline phosphatase in Nilaparvata lugens and their potential relation to development and insecticide resistance, Arch. Insect Biochem. Physiol., 2011, vol. 78, pp. 30–45. https://doi.org/10.1002/arch.20437
Article CAS PubMed Google Scholar
Kühn, F., Adiliaghdam, F., Cavallaro, P.M., Hamarneh, S.R., Tsurumi, A., Hoda, R.S., Munoz, A.R., Dhole, Y., Ramirez, J.M., Liu, E., Vasan, R., Liu, Y., Samarbafzadeh, E., Nunez, R.A., Farber, M.Z., Chopra, V., Malo, M.S., Rahme, L.G., and Hodin, R.A., Intestinal alkaline phosphatase targets the gut barrier to prevent aging, JCI Insight, 2020, vol. 26 no. 5, p. e134049. https://doi.org/10.1172/jci.insight.134049
Comments (0)