Larval Heat Stress Affects the Lifespan and Stress Resistance of Drosophila melanogaster Adults

Hetea, A., Cosconel, C., Stanescu, A.A.M., and Simionescu, A.A., Alcohol and psychoactive drugs in pregnancy, Maedica (București), 2019, vol. 14, no. 4, pp. 397–401. https://doi.org/10.26574/maedica.2019.14.4.397

Article  PubMed  PubMed Central  Google Scholar 

Borash, D.J., Teotonio, H., Rose, M.R., and Mueller, L.D., Density-dependent natural selection in Drosophila: correlations between feeding rate, development time and viability, J. Evol. Biol., 2000, vol. 13, pp. 181–187. https://doi.org/10.1046/j.1420-9101.2000.00167.x

Article  Google Scholar 

Kolss, M., Vijendravarma, R.K., Schwaller, G., and Kawecki, T.J., Life-history consequences of adaptation to larval nutritional stress in Drosophila, Evolution, 2009, vol. 63, no. 9, pp. 2389–2401. https://doi.org/10.1111/j.1558-5646.2009.00718.x

Article  PubMed  Google Scholar 

McClure, K.D., French, R.L., and Heberlein, U., A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway, Dis. Model. Mech., 2011, vol. 4, no. 3, pp. 335–346. https://doi.org/10.1242/dmm.006411

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shenoi, V.N., Ali, S.Z., and Prasad, N.G., Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding, J. Evol. Biol., 2016, vol. 29, pp. 407–417. https://doi.org/10.1111/jeb.12795

Article  CAS  PubMed  Google Scholar 

Sharma, U., Pal, D., and Prasad, R., Alkaline phosphatase: an overview, Indian J. Clin. Biochem., 2014, vol. 29, no. 3, pp. 269–278. https://doi.org/10.1007/s12291-013-0408-y

Article  CAS  PubMed  Google Scholar 

Eguchi, M., Azuma, M., Yamamoto, H., and Takeda, S., in Isozymes: Structures, Functions and Use in Biology and Medicine, New York: Wiley–Liss, 1990, pp. 267–287.

Google Scholar 

Funk, C.J., Alkaline phosphatase activity in whitefly salivary glands and saliva, Arch. Insect Biochem. Physiol., 2001, vol. 46, no. 4, pp. 165–174. https://doi.org/10.1002/arch.1026

Article  CAS  PubMed  Google Scholar 

Yang, M.Y., Wang, Z., MacPherson, M., Dow, J.A., and Kaiser, K., A novel Drosophila alkaline phosphatase specific to the ellipsoid body of the adult brain and the lower Malpighian (renal) tubule, Genetics, 2000, vol. 154, no. 1, pp. 285–297. https://doi.org/10.1093/genetics/154.1.285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cabrero, P., Pollock, V.P., Davies, S. A., and Dow, J.A., A conserved domain of alkaline phosphatase expression in the Malpighian tubules of dipteran insects, J. Exp. Biol., 2004, vol. 207, pp. 3299–3305. https://doi.org/10.1242/jeb.01156

Article  CAS  PubMed  Google Scholar 

Yi, S.X. and Adams, T.S., Age- and diapause-related acid and alkaline phosphatase activities in the intestine and malpighian tubules of the Colorado potato beetle, Leptinotarsa decemlineata (Say), Arch. Insect Biochem. Physiol., 2001, vol. 46, no. 3, pp. 152–163. https://doi.org/10.1002/arch.1025

Article  CAS  PubMed  Google Scholar 

Houk, E.J. and Hardy, J.L., Alkaline phosphatases of the mosquito, Culex tarsalis Coquillett, Comp. Biochem. Physiol. B, 1984, vol. 78, no. 2, pp. 303–310. https://doi.org/10.1016/0305-0491(84)90034-8

Article  CAS  PubMed  Google Scholar 

Igbokwe, E.C. and Mills, M., Electrophoretic variability in the phosphatase system of the yellow-fever mosquito, Aedes aegypti, Comp. Biochem. Physiol. B, 1982, vol. 73, no. 3, pp. 457–458. https://doi.org/10.1016/0305-0491(82)90058-x

Article  CAS  PubMed  Google Scholar 

Wright, T.R., Genetic of biogenic amines metabolism, sclerotisation and melanisation in Drosophila melanogaster, Adv. Genet., 1987, vol. 24, pp. 127–221.

Article  CAS  PubMed  Google Scholar 

Rauschenbach, I.Y., Serova, L.I., Timochina, I.S., Chentsova, N.A., and Schumnaja, L.V., Analysis of differences in dopamine content between two lines of Drosophila virilis in response to heat stress, J. Insect Physiol., 1993, vol. 39, pp. 761–767.

Article  CAS  Google Scholar 

Sukhanova, M.Z., Grenback, L.G., Gruntenko, N.E., Khlebodarova, T.M., and Rauschenbach, I.Y., Alkaline phosphatase in Drosophila under heat stress, J. Insect Physiol., 1996, vol. 42, no. 2, pp. 161–165. https://doi.org/10.1016/0022-1910(95)00070-4

Article  CAS  Google Scholar 

Burdina, E.V., Adonyeva, N.V., Karpova, E.K., Rauschenbach, I.Y., Menshanov, P.N., and Gruntenko, N.E., The effect of mild heat stress of different frequencies on the adaptability of Drosophila melanogaster females, Arch. Insect Biochem. Physiol., 2019, vol. 102, no. 4, p. e21619. https://doi.org/10.1002/arch.21619

Article  CAS  PubMed  Google Scholar 

Rauschenbach, I.Y., Neiroendokrinnaya regulyatsiya razvitiya nasekomykh v usloviyakh stressa: Genetiko-fiziologicheskie aspekty (Neuroendocrine Regulation of Insect Development under Stress: Genetic and Physiological Aspects), Moscow: Nauka, 1990.

Bogomolova, E.V., Rauschenbach, I.Y., Adonyeva, N.V., Alekseev, A.A., Faddeeva, N.V., and Gruntenko, N.E., Dopamine down-regulates activity of alkaline phosphatase in Drosophila: the role of D2-like receptors, J. Insect Physiol., 2010, vol. 56, no. 9, pp. 1155–1159. https://doi.org/10.1016/j.jinsphys.2010.03.014

Article  CAS  PubMed  Google Scholar 

Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics: Inference and Relationship, Griffin, C., Ed., London, 1961, vol. 2, 2nd ed., p. 312.

Book  Google Scholar 

Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontologia Electronica, 2001, vol. 4, no. 1, p. 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

Google Scholar 

Auld, S.K. and Tinsley, M.C., The evolutionary ecology of complex lifecycle parasites: Linking phenomena with mechanisms, Heredity (Edinburg), 2015, vol. 114, no. 2, pp. 125–132. https://doi.org/10.1038/hdy.2014.84

Article  CAS  PubMed  Google Scholar 

Marshall, D.J. and Morgan, S.G., Ecological and evolutionary consequences of linked life-history stages in the sea, Curr Biol., 2011, vol. 21, no. 18, pp. R718–R725. https://doi.org/10.1016/j.cub.2011.08.022

Article  CAS  PubMed  Google Scholar 

Stoks, R. and Córdoba-Aguilar, A., Evolutionary ecology of Odonata: A complex life cycle perspective, Annu. Rev. Entomol., 2012, vol. 57, pp. 249–265. https://doi.org/10.1146/annurev-ento-120710-100557

Article  CAS  PubMed  Google Scholar 

Schoch, R.R., Evolution of life cycles in early amphibians, Annu. Rev. Earth Plant Sci., 2009, vol. 37, pp. 135–162. https://doi.org/10.1146/annurev.earth.031208.100113

Article  CAS  Google Scholar 

Moran, N.A., Adaptation and constraint in the complex life-cycles of animals, Annu. Rev. Ecol. Syst., 1994, vol. 25, pp. 573–600. https://doi.org/10.1146/annurev.es.25.110194.003041

Article  Google Scholar 

Chaby, L.E., Why are there lasting effects from exposure to stress during development? An analysis of current models of early stress, Physiol. Behav., 2016, vol. 164 (Pt. A), pp. 164–181. https://doi.org/10.1016/j.physbeh.2016.05.032

Zhang, W., Chang, X.Q., Hoffmann, A., Zhang, S., and Ma, C.S., Impact of hot events at different developmental stages of a moth: the closer to adult stage, the less reproductive output, Sci. Rep., 2015, vol. 5, p. 10436. https://doi.org/10.1038/srep10436

Article  PubMed  PubMed Central  Google Scholar 

Rauschenbach, I.Y., Bogomolova, E.V., Gruntenko, N.E., Adonyeva, N.V., and Chentsova, N.A., Effects of juvenile hormone and 20-hydroxyecdysone on alkaline phosphatase activity in Drosophila under normal and heat stress conditions. J. Insect Physiol., 2007, vol. 53, pp. 587–591.

Article  CAS  PubMed  Google Scholar 

Wang, Z., Liu, S., Yang, B., and Liu, Z., Characterization of soluble and membrane-bound alkaline phosphatase in Nilaparvata lugens and their potential relation to development and insecticide resistance, Arch. Insect Biochem. Physiol., 2011, vol. 78, pp. 30–45. https://doi.org/10.1002/arch.20437

Article  CAS  PubMed  Google Scholar 

Kühn, F., Adiliaghdam, F., Cavallaro, P.M., Hamarneh, S.R., Tsurumi, A., Hoda, R.S., Munoz, A.R., Dhole, Y., Ramirez, J.M., Liu, E., Vasan, R., Liu, Y., Samarbafzadeh, E., Nunez, R.A., Farber, M.Z., Chopra, V., Malo, M.S., Rahme, L.G., and Hodin, R.A., Intestinal alkaline phosphatase targets the gut barrier to prevent aging, JCI Insight, 2020, vol. 26 no. 5, p. e134049. https://doi.org/10.1172/jci.insight.134049

Article  Google Scholar 

Comments (0)

No login
gif