Role of BKCa Channels in Pial-Vessel Dilation in Rats of Different Ages

Mad’yanova, V.V., Diseases of the circulatory system in the elderly in Russia: Dynamics of morbidity and mortality rates, Probl. Standart. Zdravookhr., 2020, nos. 11–12, pp. 44–52. https://doi.org/10.26347/1607-2502202011-12044-052

Chennupati, R., Lamers, W.H., Koehler, S.T., and De Mey, G.R., Endothelium-dependent hyperpolarization-related relaxations diminish with age in murine saphenous arteries of both sexes, Br. J. Pharmacol., 2013, vol. 169, no. 7, pp. 1486–1499. https://doi.org/10.1111/bph.12175

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho-de-Souza, J.L., Varanda, W.A., Tostes, R.C., and Chignalia, A.Z., BK channels in cardiovascular diseases and aging, Aging Dis., 2013, vol. 4, no. 1, pp. 38–49.

PubMed  Google Scholar 

Tykocki, N.R., Boerman, E.M., and Jackson, W.F., Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles, Compr. Physiol., 2017, vol. 7, no. 2, pp. 485–581. https://doi.org/10.1002/cphy.c160011

Article  PubMed  PubMed Central  Google Scholar 

Tanaka, Y., Koike, K., and Toro, L., Maxi K channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms, J. Smooth Muscle Res., 2004, vol. 40, nos. 4–5, pp. 125–153. https://doi.org/10.1540/jsmr.40.125

Article  PubMed  Google Scholar 

Jackson, W.F., Calcium-dependent ion channels and the regulation of arteriolar myogenic tone, Front. Physiol., 2021, vol. 12, p. 770450. https://doi.org/10.3389/fphys.2021.770450

Hofmann, F., Bernhard, D., Lukowski, R., and Weinmeister, P., cGMP regulated protein kinases (cGK), in Handbook of Experimental Pharmacology, Schmidt, H.H.H.W., Hofmann, F., and Stasch, J.P., Eds., Berlin; Heidelberg: Springer, 2009, vol. 191, pp. 137–162. https://doi.org/10.1007/978-3-540-68964-5_8

Serviente, C., Berry, C.W., Kenney, W.L., and Alexander, L.M., Healthy active older adults have enhanced K+ channel-dependent endothelial vasodilatory mechanisms, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2020, vol. 319, no. 1, pp. R19–R25. https://doi.org/10.1152/ajpregu.00049.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmid, J., Müller, B., Heppeler, D., Gaynullina, D., Kassmann, M., Gagov, H., Mladenov, M., Gollasch, M., and Schubert, R., The unexpected role of calcium-activated potassium channels: limitation of NO-induced arterial relaxation, J. Am. Heart Assoc., 2018, vol. 7, no. 7, p. e007808. https://doi.org/10.1161/JAHA.117.007808

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shuvaeva, V.N. and Gorshkova, O.P., Contribution of IKCa-channels to dilatation of pial arteries in young rats after ischemia/reperfusion, J. Evol. Biochem. Physiol., 2022, vol. 58, no. 6, pp. 1926–1936. https://doi.org/10.1134/S0022093022060217

Article  CAS  Google Scholar 

Sandow, S.L., Senadheera, S., Grayson, T.H., Welsh, D.G., and Murphy, T.V., Calcium and endothelium-mediated vasodilator signaling, Adv. Exp. Med. Biol., 2012, vol. 740, pp. 811–831.

Article  CAS  PubMed  Google Scholar 

Shuvaeva, V.N. and Gorshkova, O.P., Modulation of cerebral artery tone by acetylcholine in rats of different strains, Ross. Fiziol. Zh. im. I.M. Sechenova, 2018, vol. 104, no. 7, pp. 807–816. https://doi.org/10.7868/S0869813918070067

Article  Google Scholar 

Davis, C.M., Siler, D.A., and Alkayed, N.J., Endothelium-derived hyperpolarizing factor in the brain: influence of sex, vessel size and disease state, Womens Health (London), 2011, vol. 7, no. 3, pp. 293–303. https://doi.org/10.2217/whe.11.26

Article  Google Scholar 

Shuvaeva, V.N. and Gorshkova, O.P., AgeRelated Changes in the contribution of nitric oxide and potassium channels to dilation of rat pial arteries, J. Evol. Biochem. Physiol., 2021, vol. 57, no. 6, pp. 1408–1418. https://doi.org/10.1134/S0022093021060193

Article  CAS  Google Scholar 

Beleznai, T.Z., Yarova, P.L., Yuill, K.H., and Dora, K.A., Smooth muscle Ca2+-activated and voltagegated K+ channels modulate conducted dilation in rat isolated small mesenteric arteries, Microcirculation, 2011, vol. 18, no. 6, pp. 487–500. https://doi.org/10.1111/j.1549-8719.2011.00109.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chervaev, A.A., Butskikh, M.G., and Galagudza, M.M., Mechanisms of neurovascular coupling, Regul. Krovoobr. Mikrotsirkul., 2023, vol. 22, no. 2, pp. 67–73. https://doi.org/10.24884/1682-6655-2023-22-2-67-73

Article  Google Scholar 

Zuccolo, E., Lim, D., Kheder, D.A., Perna, A., Catarsi, P., Botta, L., Rosti, V., Riboni, L., Sancini, G., Tanzi, F., D’Angelo, E., Guerra, G., and Moccia, F., Acetylcholine induces intracellular Ca2+ oscillations and nitric oxide release in mouse brain endothelial cells, Cell Calcium, 2017, vol. 66, pp. 33–47. https://doi.org/10.1016/j.ceca.2017.06.003

Article  CAS  PubMed  Google Scholar 

Gorshkova, O.P., Age-related changes in the indices of cerebral blood flow velocity in rats, J. Evol. Biochem. Physiol., 2022, vol. 58, no. 3, pp. 894–900. https://doi.org/10.1134/S0022093022030231

Gorshkova, O.P., Changes in rat cerebral blood flow velocities at different stages of aging, J. Evol. Biochem. Physiol., 2023, vol. 59, no. 2, pp. 569–576. https://doi.org/10.1134/S0022093023020229

Krüger-Genge, A., Blocki, A., Franke, R.P., and Jung, F., Vascular endothelial cell biology: An update, Int. J. Mol. Sci., 2019, vol. 20, no. 18, p. 4411. https://doi.org/10.3390/ijms20184411

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell, J.A. and Kirkby, N.S., Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system, Br. J. Pharmacol., 2018, vol. 176, no. 8, pp. 1038–1050. https://doi.org/10.1111/bph.14167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanov, A.N., Popykhova, E.B., Tereshkina, N.E., Stepanova, T.V., Zlobina, O.V., and Norkin, I.A., Vasomotor function of the endothelium, Usp. Fiziol. Nauk., 2020, vol. 51, no. 4, pp. 82–104. https://doi.org/10.31857/S0301179820030066

Article  Google Scholar 

Lang, M.G., Paterno, R., Faraci, F.M., and Heistad, D.D., Mechanisms of adrenomedullin-induced dilatation of cerebral arterioles, Stroke, 1997, vol. 28, no. 1, pp. 181–185.

Article  CAS  PubMed  Google Scholar 

Sobey, C.G., Heistad, D.D., and Faraci, F.M., Potassium channels mediate dilatation of cerebral arterioles in response to arachidonate, Am. J. Physiol., 1998, vol. 275, no. 5, pp. H1606–H1612.

CAS  PubMed  Google Scholar 

Behringer, E.J., Shaw, R.L., Westcott, E.B., Socha, M.J., and Segal, S.S., Aging impairs electrical conduction along endothelium of resistance arteries through enhanced Ca2+-activated K+ channel activation, Arterioscler. Thromb. Vasc. Biol., 2013, vol. 33, no. 8, pp. 1892–1901. https://doi.org/10.1161/ATVBAHA.113.301514

Article  CAS  PubMed  PubMed Central  Google Scholar 

Behringer, E.J. and Segal, S.S., Tuning electrical conduction along endothelial tubes of resistance arteries through Ca2+-activated K+ channels, Circ Res., 2012, vol. 110, no. 10, pp. 1311–1321. https://doi.org/10.1161/CIRCRESAHA.111.262592

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif