Association of cardiorespiratory fitness with HR-pQCT bone parameters in older adults: the Study of Muscle, Mobility and Aging (SOMMA)

Sarafrazi N, Wambogo EA, Shepherd JA (2021) Osteoporosis or low bone mass in older adults, United States, 2017–2018. NCHS Data Brief, no 405. National Center for Health Statistics, Hyattsville, MD. https://doi.org/10.15620/cdc:103477

Wright NC et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29(11):2520–2526

Article  PubMed  Google Scholar 

Bonewald L (2019) Use it or lose it to age: a review of bone and muscle communication. Bone 120:212–218

Article  PubMed  Google Scholar 

Kohrt WM et al (2004) American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 36(11):1985–1996

Article  PubMed  Google Scholar 

Jackson AS, Sui X, Hébert JR, Church TS, Blair SN (2009) Role of lifestyle and aging on the longitudinal change in cardiorespiratory fitness. Arch Intern Med 169(19):1781–1787

Article  PubMed  PubMed Central  Google Scholar 

Smart TFF et al (2022) The role of resistance exercise training for improving cardiorespiratory fitness in healthy older adults: a systematic review and meta-analysis. Age Ageing 51(6):afac143

Elgaddal N, Kramarow EA, Reuben C (2022) Physical activity among adults aged 18 and over: United States, 2020. NCHS Data Brief, no. 443. National Center for Health Statistics, Hyattsville, MD. https://doi.org/10.15620/cdc:120213

Draghici AE, Taylor JA (2021) Mechanisms of bone blood flow regulation in humans. J Appl Physiol 130(3):772–780

Article  CAS  PubMed  Google Scholar 

Usiskin IM et al (2024) Vascular function and skeletal fragility: a study of tonometry, brachial hemodynamics, and bone microarchitecture. J Bone Miner Res 39(7):906–917

Article  PubMed  PubMed Central  Google Scholar 

Chen M et al (2021) Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 9(1):21

Article  PubMed  PubMed Central  Google Scholar 

DeFina LF et al (2016) High cardiorespiratory fitness is associated with reduced risk of low bone density in postmenopausal women. J Womens Health (Larchmt) 25(10):1073–1080

Article  PubMed  Google Scholar 

Wainstein HM et al (2016) The relationship between cardiorespiratory fitness and bone mineral density in men: a cross-sectional study. Mayo Clin Proc 91(6):726–734

Article  PubMed  Google Scholar 

Stewart KJ et al (2002) Fitness, fatness and activity as predictors of bone mineral density in older persons. J Intern Med 252(5):381–388

Article  CAS  PubMed  Google Scholar 

Kemmler W, Weineck J, Kalender WA, Engelke K (2004) The effect of habitual physical activity, non-athletic exercise, muscle strength, and VO2max on bone mineral density is rather low in early postmenopausal osteopenic women. J Musculoskelet Neuronal Interact 4(3):325–334

CAS  PubMed  Google Scholar 

Kaminsky LA et al (2019) Cardiorespiratory fitness and cardiovascular disease - the past, present, and future. Prog Cardiovasc Dis 62(2):86–93

Article  PubMed  Google Scholar 

Heilmeier U et al (2016) Osteoporosis imaging in the geriatric patient. Curr Radiol Rep 4(4). https://doi.org/10.1007/s40134-016-0144-1

Mikolajewicz N et al (2020) HR-pQCT measures of bone microarchitecture predict fracture: systematic review and meta-analysis. J Bone Miner Res 35(3):446–459

Article  PubMed  Google Scholar 

Samelson EJ et al (2019) Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 7(1):34–43

Article  PubMed  Google Scholar 

Cummings SR et al (2023) The Study of Muscle, Mobility and Aging (SOMMA): a unique cohort study about the cellular biology of aging and age-related loss of mobility. J Gerontol A Biol Sci Med Sci 78(11):2083–2093

Article  PubMed  PubMed Central  Google Scholar 

Wolf C et al (2024) Cardiopulmonary exercise testing in a prospective multicenter cohort of older adults. Med Sci Sports Exerc 56(9):1574–1584

Article  PubMed  Google Scholar 

Mesinovic J et al (2024) Bone imaging modality precision and agreement between DXA, pQCT and HR-pQCT. JBMR Plus 9(2):ziae158

Whittier DE et al (2020) Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 31(9):1607–1627

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pistoia W, van Rietbergen B, Lochmüller E-M, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30(6):842–848

Article  CAS  PubMed  Google Scholar 

Shuhart CR et al (2019) Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA cross-calibration and least significant change, spinal cord injury, peri-prosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom 22(4):453–471

Article  PubMed  Google Scholar 

Andresen EM et al (1994) Screening for depression in well older adults: evaluation of a short form of the CES-D. Am J Prev Med 10(2):77–84

Article  CAS  PubMed  Google Scholar 

Qiao YS et al (2024) Associations of accelerometry-measured and self-reported physical activity and sedentary behavior with skeletal muscle energetics: the Study of Muscle, Mobility and Aging (SOMMA). J Sport Health Sci 13(5):621–630

Article  PubMed  Google Scholar 

Stewart A, Mills K, King A, Haskell W, Gillis D, Ritter P (2001) CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc 33(7):1126–1141

Article  CAS  PubMed  Google Scholar 

Linge J et al (2018) Body composition profiling in the UK Biobank imaging study. Obesity (Silver Spring) 26(11):1785–1795

Article  CAS  PubMed  Google Scholar 

Evans WJ et al (2019) D(3) -Creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J Cachexia Sarcopenia Muscle 10(1):14–21

Article  PubMed  PubMed Central  Google Scholar 

Shankaran M et al (2018) Dilution of oral D(3) -creatine to measure creatine pool size and estimate skeletal muscle mass: development of a correction algorithm. J Cachexia Sarcopenia Muscle 9(3):540–546

Article  PubMed  PubMed Central  Google Scholar 

Bevier WC et al (1989) Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 4(3):421–432

Article  CAS  PubMed  Google Scholar 

Willis EA et al (2024) Older Adult Compendium of Physical Activities: energy costs of human activities in adults aged 60 and older. J Sport Health Sci 13(1):13–17

Article  PubMed  PubMed Central  Google Scholar 

Skjodt M et al (2024) Need to revise classification of physical activity intensity in older adults? The use of estimated METs, measured METs, and V̇O2 reserve. J Gerontol A Biol Sci Med Sci 79(7):glae120

Fleg JL et al (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112(5):674–682

Article  PubMed  Google Scholar 

Hollenberg M, Yang J, Haight TJ, Tager IB (2006) Longitudinal changes in aerobic capacity: implications for concepts of aging. The Journals of Gerontology. Ser A Biol Sci Med Sci 61(8):851–858

Boudenot A, Achiou Z, Portier H (2015) Does running strengthen bone? Appl Physiol Nutr Metab 40(12):1309–1312

Article  PubMed  Google Scholar 

Liu PY, Brummel-Smith K, Ilich JZ (2011) Aerobic exercise and whole-body vibration in offsetting bone loss in older adults. J Aging Res 2011:379674

Article  PubMed  PubMed Central  Google Scholar 

Lello S, Capozzi A, Scambia G (2015) Osteoporosis and cardiovascular disease: an update. Gynecol Endocrinol 31(8):590–594

Article  CAS  PubMed  Google Scholar 

Warburton DER, Nicol CW, Gatto SN, Bredin SSD (2007) Cardiovascular disease and osteoporosis: balancing risk management. Vascular Health and Risk Management 3(5):673–689

Comments (0)

No login
gif