Camacho-Hernández, N.P., and F. Peña-Ortega. 2023. Fractalkine/CX3CR1-dependent modulation of synaptic and network plasticity in health and disease. Neural Plasticity 2023: 4637073. https://doi.org/10.1155/2023/4637073.
Article CAS PubMed PubMed Central Google Scholar
Bachstetter, Adam D., Josh M. Morganti, Jennifer Jernberg, Andrea Schlunk, Staten H. Mitchell, Kaelin W. Brewster, Charles E. Hudson, et al. 2011. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiology of Aging 32: 2030–2044. https://doi.org/10.1016/j.neurobiolaging.2009.11.022.
Article CAS PubMed Google Scholar
Ueno, Masaki, Yuki Fujita, Tatsuhide Tanaka, Yuka Nakamura, Junichi Kikuta, Masaru Ishii, and Toshihide Yamashita. 2013. Layer v cortical neurons require microglial support for survival during postnatal development. Nature Neuroscience 16: 543–551. https://doi.org/10.1038/nn.3358.
Article CAS PubMed Google Scholar
Jarskog, L. Fredrik., Leisa A. Glantz, John H. Gilmore, and Jeffrey A. Lieberman. 2005. Apoptotic mechanisms in the pathophysiology of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 29: 846–858. https://doi.org/10.1016/j.pnpbp.2005.03.010.
Article CAS PubMed Google Scholar
Hoshiko, Maki, Isabelle Arnoux, Elena Avignone, Nobuhiko Yamamoto, and Etienne Audinat. 2012. Deficiency of the Microglial Receptor CX3CR1 Impairs Postnatal Functional Development of Thalamocortical Synapses in the Barrel Cortex. Journal of Neuroscience 32. Society for Neuroscience: 15106–15111. https://doi.org/10.1523/JNEUROSCI.1167-12.2012.
Paolicelli, Rosa C, Giulia Bolasco, Francesca Pagani, Laura Maggi, Maria Scianni, Patrizia Panzanelli, Maurizio Giustetto, et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science (New York, N.Y.) 333: 1456–8. https://doi.org/10.1126/science.1202529.
Gorter, Jan A., Miriam Titulaer, Nico P. A. Bos, and Evelien Huisman. 1991. Chronic neonatal MK-801 administration leads to a long-lasting increase in seizure sensitivity during the early stages of hippocampal kindling. Neuroscience Letters 134: 29–32. https://doi.org/10.1016/0304-3940(91)90501-J.
Article CAS PubMed Google Scholar
Jones, Kevin S., Joshua G. Corbin, and Molly M. Huntsman. 2014. Neonatal NMDA Receptor Blockade Disrupts Spike Timing and Glutamatergic Synapses in Fast Spiking Interneurons in a NMDA Receptor Hypofunction Model of Schizophrenia. PLOS ONE 9. Public Library of Science: e109303. https://doi.org/10.1371/journal.pone.0109303.
Li, J.-T., Y.-Y. Zhao, H.-L. Wang, X.-D. Wang, Y.-A. Su, and T.-M. Si. 2015. Long-term effects of neonatal exposure to MK-801 on recognition memory and excitatory–inhibitory balance in rat hippocampus. Neuroscience 308: 134–143. https://doi.org/10.1016/j.neuroscience.2015.09.003.
Article CAS PubMed Google Scholar
Bolós, M., J.R. Perea, J. Terreros-Roncal, N. Pallas-Bazarra, J. Jurado-Arjona, J. Ávila, and M. Llorens-Martín. 2018. Absence of microglial CX3CR1 impairs the synaptic integration of adult-born hippocampal granule neurons. Brain, Behavior, and Immunity 68. Academic Press Inc.: 76–89. https://doi.org/10.1016/j.bbi.2017.10.002.
Cardona, Astrid E., Erik P. Pioro, Margaret E. Sasse, Volodymyr Kostenko, Sandra M. Cardona, Ineke M. Dijkstra, De Ren Huang, et al. 2006. Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience 9: 917–924. https://doi.org/10.1038/nn1715.
Article CAS PubMed Google Scholar
Eyo, Ukpong B., Jiyun Peng, Madhuvika Murugan, Mingshu Mo, Almin Lalani, Ping Xie, Pingyi Xu, David J. Margolis, and Long-Jun Wu. 2016. Regulation of Physical Microglia–Neuron Interactions by Fractalkine Signaling after Status Epilepticus. eNeuro 3. Society for Neuroscience. https://doi.org/10.1523/ENEURO.0209-16.2016.
Milior, Giampaolo, Cynthia Lecours, Louis Samson, Kanchan Bisht, Silvia Poggini, Francesca Pagani, Cristina Deflorio, et al. 2016. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain, Behavior, and Immunity 55. Microglia, Physiology and Behavior: 114–125. https://doi.org/10.1016/j.bbi.2015.07.024.
Pagani, Francesca, Rosa C. Paolicelli, Emanuele Murana, Barbara Cortese, Silvia Di Angelantonio, Emanuele Zurolo, Eva Guiducci, et al. 2015. Defective microglial development in the hippocampus of Cx3cr1 deficient mice. Frontiers in Cellular Neuroscience 9: 111. https://doi.org/10.3389/fncel.2015.00111.
Article CAS PubMed PubMed Central Google Scholar
Lim, Ann Li, David Alan Taylor, and Daniel Thomas Malone. 2012. Consequences of early life MK-801 administration: Long-term behavioural effects and relevance to schizophrenia research. Behavioural Brain Research 227: 276–286. https://doi.org/10.1016/j.bbr.2011.10.052.
Article CAS PubMed Google Scholar
Coleman, Leon G., L. Fredrik Jarskog, Sheryl S. Moy, and Fulton T. Crews. 2009. Deficits in adult prefrontal cortex neurons and behavior following early post-natal NMDA antagonist treatment. Pharmacology Biochemistry and Behavior 93. Elsevier: 322–330. https://doi.org/10.1016/j.pbb.2009.04.017.
Howes, O.D., and R. McCutcheon. 2017. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Translational Psychiatry 7. Nature Publishing Group: e1024–e1024. https://doi.org/10.1038/tp.2016.278.
Howes, Oliver D., and Ekaterina Shatalina. 2022. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biological Psychiatry 92. Elsevier: 501–513. https://doi.org/10.1016/j.biopsych.2022.06.017.
Murray, Robin M., Vishal Bhavsar, Giada Tripoli, and Oliver Howes. 2017. 30 years on: How the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophrenia Bulletin 43: 1190–1196. https://doi.org/10.1093/schbul/sbx121.
Article PubMed PubMed Central Google Scholar
Paolicelli, Rosa C., Kanchan Bisht, and Marie Tremblay. 2014. Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Frontiers in Cellular Neuroscience 8: 1–10. https://doi.org/10.3389/fncel.2014.00129.
Jung, Steffen, Julio Aliberti, Petra Graemmel, Mary Jean Sunshine, Georg W. Kreutzberg, Alan Sher, and Dan R. Littman. 2000. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Molecular and Cellular Biology 20: 4106–4114. https://doi.org/10.1128/MCB.20.11.4106-4114.2000.
Article CAS PubMed PubMed Central Google Scholar
Yona, Simon, Ki-Wook. Kim, Yochai Wolf, Alexander Mildner, Diana Varol, Michal Breker, Dalit Strauss-Ayali, et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38: 79–91. https://doi.org/10.1016/j.immuni.2012.12.001.
Article CAS PubMed Google Scholar
Zhan, Yang, Rosa C. Paolicelli, Francesco Sforazzini, Laetitia Weinhard, Giulia Bolasco, Francesca Pagani, Alexei L. Vyssotski, et al. 2014. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience 17. Nature Publishing Group: 400–406. https://doi.org/10.1038/nn.3641.
Méndez-Salcido, Felipe Antonio, Mayra Itzel Torres-Flores, Benito Ordaz, and Fernando Peña-Ortega. 2022. Abnormal innate and learned behavior induced by neuron–microglia miscommunication is related to CA3 reconfiguration. Glia 70: 1630–1651. https://doi.org/10.1002/glia.24185.
Article CAS PubMed Google Scholar
Rogers, J.T., J.M. Morganti, A.D. Bachstetter, C.E. Hudson, M.M. Peters, B.A. Grimmig, E.J. Weeber, P.C. Bickford, and C. Gemma. 2011. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. Journal of Neuroscience 31: 16241–16250. https://doi.org/10.1523/JNEUROSCI.3667-11.2011.
Article CAS PubMed Google Scholar
Sheridan, Graham K., and Keith J. Murphy. 2013. Neuron-glia crosstalk in health and disease: Fractalkine and CX3CR1 take centre stage. Open Biology 3. https://doi.org/10.1098/rsob.130181.
Fuhrmann, Martin, Tobias Bittner, Christian K.E. Jung, Steffen Burgold, Richard M. Page, Gerda Mitteregger, Christian Haass, Frank M. LaFerla, Hans Kretzschmar, and Jochen Herms. 2010. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nature Neuroscience 13. Nature Publishing Group: 411–413. https://doi.org/10.1038/nn.2511.
Peters van Ton, A.M., M.M. Verbeek, W. Alkema, P. Pickkers, and W.F. Abdo. 2020. Downregulation of synapse-associated protein expression and loss of homeostatic microglial control in cerebrospinal fluid of infectious patients with delirium and patients with Alzheimer’s disease. Brain, Behavior, and Immunity 89: 656–667. https://doi.org/10.1016/j.bbi.2020.06.027.
Article CAS PubMed Google Scholar
Bergon, Aurélie, Raoul Belzeaux, Magali Comte, Florence Pelletier, Mylène Hervé, Erin J. Gardiner, Natalie J. Beveridge, et al. 2015. CX3CR1 is dysregulated in blood and brain from schizophrenia patients. Schizophrenia Research 168: 434–443. https://doi.org/10.1016/j.schres.2015.08.010.
Hill, Sarah L., Li Shao, and Clare L. Beasley. 2020. Diminished levels of the chemokine fractalkine in post-mortem prefrontal cortex in schizophrenia but not bipolar disorder. The World Journal of Biological Psychiatry 0. Taylor & Francis: 1–10. https://doi.org/10.1080/15622975.2020.1755451.
Ali, Idrish, Deepti Chugh, and Christine T. Ekdahl. 2015. Role of fractalkine-CX3CR1 pathway in seizure-induced microglial activation, neurodegeneration, and neuroblast production in the adult rat brain. Neurobiology of Disease 74: 194–203. https://doi.org/10.1016/j.nbd.2014.11.009.
Article CAS PubMed Google Scholar
Roseti, Cristina, Sergio Fucile, Clotilde Lauro, Katiuscia Martinello, Cristina Bertollini, Vincenzo Esposito, Addolorata Mascia, et al. 2013. Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy. Epilepsia 54: 1834–1844. https://doi.org/10.1111/epi.12354.
Article CAS PubMed Google Scholar
Lauro, Clotilde, Giuseppina Chece, Lucia Monaco, Fabrizio Antonangeli, Giovanna Peruzzi, Serena Rinaldo, Alessio Paone, Francesca Cutruzzolà, and Cristina Limatola. 2019. Fractalkine Modulates Microglia Metabolism in Brain Ischemia. Frontiers in Cellular Neuroscience 13.
Soriano, Sulpicio G., Lakshmi S. Amaravadi, Yanming F. Wang, Hong Zhou, Gary X. Yu, James R. Tonra, Victoria Fairchild-Huntress, et al. 2002. Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. Journal of Neuroimmunology 125. Elsevier: 59–65. https://doi.org/10.1016/S0165-5728(02)00033-4.
Wang, Jinkun, Yan Gan, Pengcheng Han, Junxiang Yin, Qingwei Liu, Soha Ghanian, Feng Gao, Guanghui Gong, and Zhiwei Tang. 2018. Ischemia-induced Neuronal Cell Death Is Mediated by Chemokine Receptor CX3CR1. Scientific Reports 8. Nature Publishing Group: 556. https://doi.org/10.1038/s41598-017-18774-0.
Deiva, Kumaran, Thomas Geeraerts, Hassan Salim, Philippe Leclerc, Christiane Héry, Bénédicte. Hugel, Jean-Marie. Freyssinet, and Marc Tardieu. 2004. Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. European Journal of Neuroscience 20: 3222–3232. https://doi.org/10.1111/j.1460-9568.2004.03800.x.
Scianni, Maria, Letizia Antonilli, Giuseppina Chece, Gloria Cristalli, Maria Amalia Di. Castro, Cristina Limatola, and Laura Maggi. 2013. Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity. Journal of Neuroinflammation 10: 876. https://doi.org/10.1186/1742-2094-10-108.
Ikonomidou, Chrysanthy, Friederike Bosch, Michael Miksa, Petra Bittigau, Jessica Vöckler, Krikor Dikranian, Tanya I. Tenkova, Vanya Stefovska, Lechoslaw Turski, and John W. Olney. 1999. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283. American Association for the Advancement of Science: 70–74. https://doi.org/10.1126/science.283.5398.70.
Comments (0)