Targeting SLC7 A11 Ameliorates Ulcerative Colitis by Promoting Efferocytosis Through the ERK1/2 Pathway

Ordás, I., L. Eckmann, M. Talamini, D.C. Baumgart, and W.J. Sandborn. 2012. Ulcerative colitis. Lancet 380 (9853): 1606–1619. https://doi.org/10.1016/S0140-6736(12)60150-0.

Article  PubMed  Google Scholar 

Kaplan, G.G. 2015. The global burden of IBD: From 2015 to 2025. Nature Reviews. Gastroenterology & Hepatology 12 (12): 720–727. https://doi.org/10.1038/nrgastro.2015.150.

Article  Google Scholar 

Kobayashi, T., B. Siegmund, C. Le Berre, S.C. Wei, M. Ferrante, B. Shen, C.N. Bernstein, S. Danese, L. Peyrin-Biroulet, and T. Hibi. 2020. Ulcerative colitis. Nature Reviews. Disease Primers 6 (1): 74. https://doi.org/10.1038/s41572-020-0205-x.

Article  PubMed  Google Scholar 

Allez, M., K. Karmiris, E. Louis, G. Van Assche, S. Ben-Horin, A. Klein, J. Van der Woude, F. Baert, R. Eliakim, K. Katsanos, J. Brynskov, F. Steinwurz, S. Danese, S. Vermeire, J.L. Teillaud, M. Lémann, and Y. Chowers. 2010. Report of the ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases: Definitions, frequency and pharmacological aspects. Journal of Crohn’s & Colitis 4 (4): 355–366. https://doi.org/10.1016/j.crohns.2010.04.004.

Article  Google Scholar 

Dignass, A., C. Ainsworth, S. Hartz, N. Dunnewind, I. Redondo, C. Sapin, S. Kroep, N. Halfpenny, E. Arcà, and S. Hoque. 2024. Efficacy and Safety of Advanced Therapies in Moderately-to-Severely Active Ulcerative Colitis: A Systematic Review and Network Meta-analysis. Advances in Therapy 41 (12): 4446–4462. https://doi.org/10.1007/s12325-024-03003-8.

Article  PubMed  PubMed Central  Google Scholar 

Doran, A.C., A. Yurdagul Jr., and I. Tabas. 2020. Efferocytosis in health and disease. Nature Reviews. Immunology 20 (4): 254–267. https://doi.org/10.1038/s41577-019-0240-6.

Article  CAS  PubMed  Google Scholar 

Medina, C.B., and K.S. Ravichandran. 2016. Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death and Differentiation 23 (6): 979–989. https://doi.org/10.1038/cdd.2016.13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Segawa, K., and S. Nagata. 2015. An Apoptotic “Eat Me” Signal: Phosphatidylserine Exposure. Trends in Cell biology 25 (11): 639–650. https://doi.org/10.1016/j.tcb.2015.08.003.

Article  CAS  PubMed  Google Scholar 

Zhou, Y., M. Fei, G. Zhang, W.C. Liang, W. Lin, Y. Wu, R. Piskol, J. Ridgway, E. McNamara, H. Huang, J. Zhang, J. Oh, J.M. Patel, D. Jakubiak, J. Lau, B. Blackwood, D.D. Bravo, Y. Shi, J. Wang, H.M. Hu, and M. Yan. 2020. Blockade of the Phagocytic Receptor MerTK on Tumor-Associated Macrophages Enhances P2X7R-Dependent STING Activation by Tumor-Derived cGAMP. Immunity 52 (2): 357–373. https://doi.org/10.1016/j.immuni.2020.01.014.

Article  CAS  PubMed  Google Scholar 

Armstrong, A., and K.S. Ravichandran. 2011. Phosphatidylserine receptors: What is the new RAGE? EMBO Reports 12 (4): 287–288. https://doi.org/10.1038/embor.2011.41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, Y., N. Tibrewal, and R.B. Birge. 2006. Phosphatidylserine recognition by phagocytes: A view to a kill. Trends in Cell Biology 16 (4): 189–197. https://doi.org/10.1016/j.tcb.2006.02.003.

Article  CAS  PubMed  Google Scholar 

Lee, H.N., L. Tian, N. Bouladoux, J. Davis, M. Quinones, Y. Belkaid, J.E. Coligan, and K. Krzewski. 2017. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest 127 (5): 1905–1917. https://doi.org/10.1172/JCI89531.

Article  PubMed  PubMed Central  Google Scholar 

Kumar, S., and R.B. Birge. 2016. Efferocytosis. Current Biology 26 (13): R558–R559. https://doi.org/10.1016/j.cub.2016.01.059.

Article  CAS  PubMed  Google Scholar 

Abdolmaleki, F., N. Farahani, S.M. Gheibi Hayat, M. Pirro, V. Bianconi, G.E. Barreto, and A. Sahebkar. 2018. The Role of Efferocytosis in Autoimmune Diseases. Frontiers in Immunology 9:1645. https://doi.org/10.3389/fimmu.2018.01645.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trilleaud, C., V. Gauttier, K. Biteau, I. Girault, L. Belarif, C. Mary, S. Pengam, G. Teppaz, V. Thepenier, R. Danger, G. Robert-Siegwald, M. Néel, S. Bruneau, A. Glémain, A. Néel, A. Poupon, J.F. Mosnier, G. Chêne, M. Dubourdeau, G. Blancho, and N. Poirier. 2021. Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. Science Advances 7 (14): 1453. https://doi.org/10.1126/sciadv.abd1453.

Article  CAS  Google Scholar 

Dejani, N.N., A.B. Orlando, V.E. Niño, L.A. Penteado, F.F. Verdan, J.M.R. Bazzano, A.C. Codo, A.C.G. Salina, A.C. Saraiva, M.R. Avelar, L.C. Spolidorio, C.H. Serezani, and A.I. Medeiros. 2018. Intestinal host defense outcome is dictated by PGE2 production during efferocytosis of infected cells. Proceedings of the National Academy of Sciences of the United States of America 115 (36): E8469–E8478. https://doi.org/10.1073/pnas.1722016115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J., D. Zhao, Z. Lei, P. Ge, Z. Lu, Q. Chai, Y. Zhang, L. Qiang, Y. Yu, X. Zhang, B. Li, S. Zhu, L. Zhang, and C.H. Liu. 2023. TRIM27 maintains gut homeostasis by promoting intestinal stem cell self-renewal. Cellular & Molecular Immunology 20 (2): 158–174. https://doi.org/10.1038/s41423-022-00963-1.

Article  CAS  Google Scholar 

Peterson, L.W., and D. Artis. 2014. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews. Immunology 14 (3): 141–153. https://doi.org/10.1038/nri3608.

Article  CAS  PubMed  Google Scholar 

Rask-Andersen, M., S. Masuram, R. Fredriksson, and H.B. Schiöth. 2013. Solute carriers as drug targets: Current use, clinical trials and prospective. Molecular Aspects of Medicine 34 (2–3): 702–710. https://doi.org/10.1016/j.mam.2012.07.015.

Article  CAS  PubMed  Google Scholar 

Fotiadis, D., Y. Kanai, and M. Palacín. 2013. The SLC3 and SLC7 families of amino acid transporters. Molecular Aspects of Medicine 34 (2–3): 139–158. https://doi.org/10.1016/j.mam.2012.10.007.

Article  CAS  PubMed  Google Scholar 

Trzeciak, A., Y.T. Wang, and J.S.A. Perry. 2021. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metabolism 33 (11): 2126–2141. https://doi.org/10.1016/j.cmet.2021.08.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maschalidi, S., P. Mehrotra, B.N. Keçeli, H.K.L. De Cleene, K. Lecomte, R. Van der Cruyssen, P. Janssen, J. Pinney, G. van Loo, D. Elewaut, A. Massie, E. Hoste, and K.S. Ravichandran. 2022. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606 (7915): 776–784. https://doi.org/10.1038/s41586-022-04754-6.

Article  CAS  PubMed  Google Scholar 

Yurdagul, A., Jr. 2021. Metabolic Consequences of Efferocytosis and its Impact on Atherosclerosis. Immunometabolism 3 (2): e210017.

Article  PubMed  PubMed Central  Google Scholar 

Mehrotra, P., and K.S. Ravichandran. 2022. Drugging the efferocytosis process: Concepts and opportunities. Nature Reviews. Drug Discovery 21 (8): 601–620. https://doi.org/10.1038/s41573-022-00470-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morioka, S., J.S.A. Perry, M.H. Raymond, C.B. Medina, Y. Zhu, L. Zhao, V. Serbulea, S. Onengut-Gumuscu, N. Leitinger, S. Kucenas, J.C. Rathmell, L. Makowski, and K.S. Ravichandran. 2018. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563 (7733): 714–718. https://doi.org/10.1038/s41586-018-0735-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wirtz, S., C. Neufert, B. Weigmann, and M.F. Neurath. 2007. Chemically induced mouse models of intestinal inflammation. Nature Protocols 2 (3): 541–546. https://doi.org/10.1038/nprot.2007.41.

Article  CAS  PubMed  Google Scholar 

Zhihao Huang (2021) The repairment function and molecular mechanism of CBS-H2S axis in intestinal epithelial injury through maintaining crypt basal cell stemness.

Chen, S.W., P.Y. Wang, Y.C. Liu, L. Sun, J. Zhu, S. Zuo, J. Ma, T.Y. Li, J.L. Zhang, G.W. Chen, X. Wang, Q.R. Zhu, Y.W. Zheng, Z.Y. Chen, Z.H. Yao, and Y.S. Pan. 2016. Effect of Long Noncoding RNA H19 Overexpression on Intestinal Barrier Function and Its Potential Role in the Pathogenesis of Ulcerative Colitis. Inflammatory Bowel Diseases 22 (11): 2582–2592. https://doi.org/10.1097/MIB.0000000000000932.

Comments (0)

No login
gif