Ordás, I., L. Eckmann, M. Talamini, D.C. Baumgart, and W.J. Sandborn. 2012. Ulcerative colitis. Lancet 380 (9853): 1606–1619. https://doi.org/10.1016/S0140-6736(12)60150-0.
Kaplan, G.G. 2015. The global burden of IBD: From 2015 to 2025. Nature Reviews. Gastroenterology & Hepatology 12 (12): 720–727. https://doi.org/10.1038/nrgastro.2015.150.
Kobayashi, T., B. Siegmund, C. Le Berre, S.C. Wei, M. Ferrante, B. Shen, C.N. Bernstein, S. Danese, L. Peyrin-Biroulet, and T. Hibi. 2020. Ulcerative colitis. Nature Reviews. Disease Primers 6 (1): 74. https://doi.org/10.1038/s41572-020-0205-x.
Allez, M., K. Karmiris, E. Louis, G. Van Assche, S. Ben-Horin, A. Klein, J. Van der Woude, F. Baert, R. Eliakim, K. Katsanos, J. Brynskov, F. Steinwurz, S. Danese, S. Vermeire, J.L. Teillaud, M. Lémann, and Y. Chowers. 2010. Report of the ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases: Definitions, frequency and pharmacological aspects. Journal of Crohn’s & Colitis 4 (4): 355–366. https://doi.org/10.1016/j.crohns.2010.04.004.
Dignass, A., C. Ainsworth, S. Hartz, N. Dunnewind, I. Redondo, C. Sapin, S. Kroep, N. Halfpenny, E. Arcà, and S. Hoque. 2024. Efficacy and Safety of Advanced Therapies in Moderately-to-Severely Active Ulcerative Colitis: A Systematic Review and Network Meta-analysis. Advances in Therapy 41 (12): 4446–4462. https://doi.org/10.1007/s12325-024-03003-8.
Article PubMed PubMed Central Google Scholar
Doran, A.C., A. Yurdagul Jr., and I. Tabas. 2020. Efferocytosis in health and disease. Nature Reviews. Immunology 20 (4): 254–267. https://doi.org/10.1038/s41577-019-0240-6.
Article CAS PubMed Google Scholar
Medina, C.B., and K.S. Ravichandran. 2016. Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death and Differentiation 23 (6): 979–989. https://doi.org/10.1038/cdd.2016.13.
Article CAS PubMed PubMed Central Google Scholar
Segawa, K., and S. Nagata. 2015. An Apoptotic “Eat Me” Signal: Phosphatidylserine Exposure. Trends in Cell biology 25 (11): 639–650. https://doi.org/10.1016/j.tcb.2015.08.003.
Article CAS PubMed Google Scholar
Zhou, Y., M. Fei, G. Zhang, W.C. Liang, W. Lin, Y. Wu, R. Piskol, J. Ridgway, E. McNamara, H. Huang, J. Zhang, J. Oh, J.M. Patel, D. Jakubiak, J. Lau, B. Blackwood, D.D. Bravo, Y. Shi, J. Wang, H.M. Hu, and M. Yan. 2020. Blockade of the Phagocytic Receptor MerTK on Tumor-Associated Macrophages Enhances P2X7R-Dependent STING Activation by Tumor-Derived cGAMP. Immunity 52 (2): 357–373. https://doi.org/10.1016/j.immuni.2020.01.014.
Article CAS PubMed Google Scholar
Armstrong, A., and K.S. Ravichandran. 2011. Phosphatidylserine receptors: What is the new RAGE? EMBO Reports 12 (4): 287–288. https://doi.org/10.1038/embor.2011.41.
Article CAS PubMed PubMed Central Google Scholar
Wu, Y., N. Tibrewal, and R.B. Birge. 2006. Phosphatidylserine recognition by phagocytes: A view to a kill. Trends in Cell Biology 16 (4): 189–197. https://doi.org/10.1016/j.tcb.2006.02.003.
Article CAS PubMed Google Scholar
Lee, H.N., L. Tian, N. Bouladoux, J. Davis, M. Quinones, Y. Belkaid, J.E. Coligan, and K. Krzewski. 2017. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest 127 (5): 1905–1917. https://doi.org/10.1172/JCI89531.
Article PubMed PubMed Central Google Scholar
Kumar, S., and R.B. Birge. 2016. Efferocytosis. Current Biology 26 (13): R558–R559. https://doi.org/10.1016/j.cub.2016.01.059.
Article CAS PubMed Google Scholar
Abdolmaleki, F., N. Farahani, S.M. Gheibi Hayat, M. Pirro, V. Bianconi, G.E. Barreto, and A. Sahebkar. 2018. The Role of Efferocytosis in Autoimmune Diseases. Frontiers in Immunology 9:1645. https://doi.org/10.3389/fimmu.2018.01645.
Article CAS PubMed PubMed Central Google Scholar
Trilleaud, C., V. Gauttier, K. Biteau, I. Girault, L. Belarif, C. Mary, S. Pengam, G. Teppaz, V. Thepenier, R. Danger, G. Robert-Siegwald, M. Néel, S. Bruneau, A. Glémain, A. Néel, A. Poupon, J.F. Mosnier, G. Chêne, M. Dubourdeau, G. Blancho, and N. Poirier. 2021. Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. Science Advances 7 (14): 1453. https://doi.org/10.1126/sciadv.abd1453.
Dejani, N.N., A.B. Orlando, V.E. Niño, L.A. Penteado, F.F. Verdan, J.M.R. Bazzano, A.C. Codo, A.C.G. Salina, A.C. Saraiva, M.R. Avelar, L.C. Spolidorio, C.H. Serezani, and A.I. Medeiros. 2018. Intestinal host defense outcome is dictated by PGE2 production during efferocytosis of infected cells. Proceedings of the National Academy of Sciences of the United States of America 115 (36): E8469–E8478. https://doi.org/10.1073/pnas.1722016115.
Article CAS PubMed PubMed Central Google Scholar
Wang, J., D. Zhao, Z. Lei, P. Ge, Z. Lu, Q. Chai, Y. Zhang, L. Qiang, Y. Yu, X. Zhang, B. Li, S. Zhu, L. Zhang, and C.H. Liu. 2023. TRIM27 maintains gut homeostasis by promoting intestinal stem cell self-renewal. Cellular & Molecular Immunology 20 (2): 158–174. https://doi.org/10.1038/s41423-022-00963-1.
Peterson, L.W., and D. Artis. 2014. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews. Immunology 14 (3): 141–153. https://doi.org/10.1038/nri3608.
Article CAS PubMed Google Scholar
Rask-Andersen, M., S. Masuram, R. Fredriksson, and H.B. Schiöth. 2013. Solute carriers as drug targets: Current use, clinical trials and prospective. Molecular Aspects of Medicine 34 (2–3): 702–710. https://doi.org/10.1016/j.mam.2012.07.015.
Article CAS PubMed Google Scholar
Fotiadis, D., Y. Kanai, and M. Palacín. 2013. The SLC3 and SLC7 families of amino acid transporters. Molecular Aspects of Medicine 34 (2–3): 139–158. https://doi.org/10.1016/j.mam.2012.10.007.
Article CAS PubMed Google Scholar
Trzeciak, A., Y.T. Wang, and J.S.A. Perry. 2021. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metabolism 33 (11): 2126–2141. https://doi.org/10.1016/j.cmet.2021.08.001.
Article CAS PubMed PubMed Central Google Scholar
Maschalidi, S., P. Mehrotra, B.N. Keçeli, H.K.L. De Cleene, K. Lecomte, R. Van der Cruyssen, P. Janssen, J. Pinney, G. van Loo, D. Elewaut, A. Massie, E. Hoste, and K.S. Ravichandran. 2022. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 606 (7915): 776–784. https://doi.org/10.1038/s41586-022-04754-6.
Article CAS PubMed Google Scholar
Yurdagul, A., Jr. 2021. Metabolic Consequences of Efferocytosis and its Impact on Atherosclerosis. Immunometabolism 3 (2): e210017.
Article PubMed PubMed Central Google Scholar
Mehrotra, P., and K.S. Ravichandran. 2022. Drugging the efferocytosis process: Concepts and opportunities. Nature Reviews. Drug Discovery 21 (8): 601–620. https://doi.org/10.1038/s41573-022-00470-y.
Article CAS PubMed PubMed Central Google Scholar
Morioka, S., J.S.A. Perry, M.H. Raymond, C.B. Medina, Y. Zhu, L. Zhao, V. Serbulea, S. Onengut-Gumuscu, N. Leitinger, S. Kucenas, J.C. Rathmell, L. Makowski, and K.S. Ravichandran. 2018. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563 (7733): 714–718. https://doi.org/10.1038/s41586-018-0735-5.
Article CAS PubMed PubMed Central Google Scholar
Wirtz, S., C. Neufert, B. Weigmann, and M.F. Neurath. 2007. Chemically induced mouse models of intestinal inflammation. Nature Protocols 2 (3): 541–546. https://doi.org/10.1038/nprot.2007.41.
Article CAS PubMed Google Scholar
Zhihao Huang (2021) The repairment function and molecular mechanism of CBS-H2S axis in intestinal epithelial injury through maintaining crypt basal cell stemness.
Chen, S.W., P.Y. Wang, Y.C. Liu, L. Sun, J. Zhu, S. Zuo, J. Ma, T.Y. Li, J.L. Zhang, G.W. Chen, X. Wang, Q.R. Zhu, Y.W. Zheng, Z.Y. Chen, Z.H. Yao, and Y.S. Pan. 2016. Effect of Long Noncoding RNA H19 Overexpression on Intestinal Barrier Function and Its Potential Role in the Pathogenesis of Ulcerative Colitis. Inflammatory Bowel Diseases 22 (11): 2582–2592. https://doi.org/10.1097/MIB.0000000000000932.
Comments (0)