LARS1 Promotes Tubular Epithelial Cells Epithelial Mesenchymal Transition in Chronic Kidney Disease by Inhibiting Lipophagy

Zhang, Y., Y. Yang, F. Yang, X. Liu, P. Zhan, J. Wu, et al. 2023. HDAC9-mediated epithelial cell cycle arrest in G2/M contributes to kidney fibrosis in male mice. Nature Communications 14 (1): 3007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, L., J. Long, W. Jiang, Y. Shi, X. He, Z. Zhou, et al. 2016. Trends in chronic kidney disease in China. New England Journal of Medicine 375 (9): 905–906.

Article  PubMed  Google Scholar 

Tang, P.M., D.J. Nikolic-Paterson, and H.Y. Lan. 2019. Macrophages: Versatile players in renal inflammation and fibrosis. Nature Reviews. Nephrology 15 (3): 144–158.

Article  PubMed  Google Scholar 

Liu, K., and M.J. Czaja. 2013. Regulation of lipid stores and metabolism by lipophagy. Cell Death and Differentiation 20 (1): 3–11.

Article  PubMed  Google Scholar 

Guebre-Egziabher, F., P.M. Alix, L. Koppe, C.C. Pelletier, E. Kalbacher, D. Fouque, et al. 2013. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 95 (11): 1971–1979.

Article  CAS  PubMed  Google Scholar 

Opazo-Rios, L., S. Mas, G. Marin-Royo, S. Mezzano, C. Gomez-Guerrero, J.A. Moreno, et al. 2020. Lipotoxicity and diabetic nephropathy: Novel mechanistic insights and therapeutic opportunities. International Journal of Molecular Sciences. 21 (7): 2632.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thongnak, L., A. Pongchaidecha, and A. Lungkaphin. 2020. Renal lipid metabolism and lipotoxicity in diabetes. American Journal of the Medical Sciences 359 (2): 84–99.

Article  PubMed  Google Scholar 

Izquierdo-Lahuerta, A., C. Martinez-Garcia, and G. Medina-Gomez. 2016. Lipotoxicity as a trigger factor of renal disease. Journal of Nephrology 29 (5): 603–610.

Article  CAS  PubMed  Google Scholar 

Lapierre, L.R., M.J. Silvestrini, L. Nunez, K. Ames, S. Wong, T.T. Le, et al. 2013. Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9 (3): 278–286.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouimet, M., V. Franklin, E. Mak, X. Liao, I. Tabas, and Y.L. Marcel. 2011. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metabolism 13 (6): 655–667.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin, D.W. 2020. Lipophagy: Molecular mechanisms and implications in metabolic disorders. Molecules and Cells 43 (8): 686–693.

CAS  PubMed  PubMed Central  Google Scholar 

Livingston, M.J., S. Shu, Y. Fan, Z. Li, Q. Jiao, X.M. Yin, et al. 2023. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy 19 (1): 256–277.

Article  CAS  PubMed  Google Scholar 

Li, Y., P. Yang, L. Zhao, Y. Chen, X. Zhang, S. Zeng, et al. 2019. CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. Journal of Lipid Research 60 (4): 844–855.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, H., S. Yan, B. Khambu, F. Ma, Y. Li, X. Chen, et al. 2018. Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy 14 (10): 1779–1795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Z., Z. Yao, Y. Chen, L. Qian, S. Jiang, J. Zhou, et al. 2018. Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomedicine & Pharmacotherapy 97: 339–348.

Article  CAS  Google Scholar 

Han, Y., S. Xiong, H. Zhao, S. Yang, M. Yang, X. Zhu, et al. 2021. Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death & Disease 12 (11): 1031.

Article  CAS  Google Scholar 

Kang, H.M., S.H. Ahn, P. Choi, Y.A. Ko, S.H. Han, F. Chinga, et al. 2015. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nature Medicine 21 (1): 37–46.

Article  CAS  PubMed  Google Scholar 

Sung, Y., I. Yoon, J.M. Han, and S. Kim. 2022. Functional and pathologic association of aminoacyl-tRNA synthetases with cancer. Experimental & Molecular Medicine 54 (5): 553–566.

Article  CAS  Google Scholar 

Yoon, I., M. Nam, H.K. Kim, H.S. Moon, S. Kim, J. Jang, et al. 2020. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1. Science 367 (6474): 205–210.

Article  CAS  PubMed  Google Scholar 

Yoon, M.S., K. Son, E. Arauz, J.M. Han, S. Kim, and J. Chen. 2016. Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling. Cell Reports 16 (6): 1510–1517.

Article  CAS  PubMed  Google Scholar 

Lee, M., J.H. Kim, I. Yoon, C. Lee, M. FallahiSichani, J.S. Kang, et al. 2018. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway. Proceedings of the National Academy of Sciences U S A 115 (23): E5279–E5288.

Article  CAS  Google Scholar 

Caron, A., D. Richard, and M. Laplante. 2015. The Roles of mTOR Complexes in Lipid Metabolism. Annual Review of Nutrition 35: 321–348.

Article  CAS  PubMed  Google Scholar 

Peterson, T.R., S.S. Sengupta, T.E. Harris, A.E. Carmack, S.A. Kang, E. Balderas, et al. 2011. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146 (3): 408–420.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao, Z., and W. Zhang. 2018. Role of mTOR in Glucose and Lipid Metabolism. International Journal of Molecular Sciences 19 (7): 2043.

Article  PubMed  PubMed Central  Google Scholar 

Xu, H., Q. Li, J. Liu, J. Zhu, L. Li, Z. Wang, et al. 2018. β-Arrestin-1 deficiency ameliorates renal interstitial fibrosis by blocking Wnt1/beta-catenin signaling in mice. Journal of Molecular Medicine (Berl) 96 (1): 97–109.

Article  CAS  Google Scholar 

Mitrofanova, A., S. Merscher, and A. Fornoni. 2023. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nature Reviews Nephrology 19 (10): 629–645.

Article  CAS  PubMed  Google Scholar 

Li, S., N. Mariappan, J. Megyesi, B. Shank, K. Kannan, S. Theus, et al. 2013. Proximal tubule PPARalpha attenuates renal fibrosis and inflammation caused by unilateral ureteral obstruction. American Journal of Physiology. Renal Physiology 305 (5): F618-627.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, B.C., T.T. Tang, L.L. Lv, and H.Y. Lan. 2018. Renal tubule injury: A driving force toward chronic kidney disease. Kidney International 93 (3): 568–579.

Article  CAS  PubMed  Google Scholar 

Chen, L., M.L. Sha, F.T. Chen, C.Y. Jiang, D. Li, C.L. Xu, et al. 2023. Upregulation of KLF14 expression attenuates kidney fibrosis by inducing PPARalpha-mediated fatty acid oxidation. Free Radical Biology & Medicine 195: 132–144.

Article  CAS  Google Scholar 

Thiery, J.P., H. Acloque, R.Y. Huang, and M.A. Nieto. 2009. Epithelial-mesenchymal transitions in development and disease. Cell 139 (5): 871–890.

Article  CAS  PubMed  Google Scholar 

Hills, C.E., and P.E. Squires. 2011. The role of TGF-beta and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine & Growth Factor Reviews 22 (3): 131–139.

CAS 

Comments (0)

No login
gif