Critical Role of Cholic Acid in the Development of iHFC Diet-induced MASH in TSNO Mice

Younossi, Z., Q.M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, et al. 2018. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nature Reviews Gastroenterology & Hepatology 15: 11–20.

Article  Google Scholar 

Chalasani, N., Z. Younossi, J.E. Lavine, M. Charlton, K. Cusi, M. Rinella, et al. 2018. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67: 328–357.

Article  PubMed  Google Scholar 

Kazankov, K., S.M.D. Jorgensen, K.L. Thomsen, H.J. Moller, H. Vilstrup, J. George, et al. 2019. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nature Reviews Gastroenterology & Hepatology 16: 145–159.

Article  CAS  Google Scholar 

Reid, D.T., J.L. Reyes, B.A. McDonald, T. Vo, R.A. Reimer, and B. Eksteen. 2016. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation. PLoS ONE 11: e0159524.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daemen, S., A. Gainullina, G. Kalugotla, L. He, M.M. Chan, J.W. Beals, et al. 2021. Dynamic Shifts in the Composition of Resident and Recruited Macrophages Influence Tissue Remodeling in NASH. Cell Reports 34: 108626.

Article  CAS  PubMed  Google Scholar 

Itoh, M., H. Kato, T. Suganami, K. Konuma, Y. Marumoto, S. Terai, et al. 2013. Hepatic crown-like structure: A unique histological feature in non-alcoholic steatohepatitis in mice and humans. PLoS ONE 8: e82163.

Article  PubMed  PubMed Central  Google Scholar 

Itoh, M., T. Suganami, H. Kato, S. Kanai, I. Shirakawa, T. Sakai, et al. 2017. CD11c+ resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of nonalcoholic steatohepatitis. JCI Insight 2 (22): e92902.

Article  PubMed  PubMed Central  Google Scholar 

Jaitin, D.A., L. Adlung, C.A. Thaiss, A. Weiner, B. Li, H. Descamps, et al. 2019. Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell 178: 686–698.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Remmerie, A., L. Martens, T. Thone, A. Castoldi, R. Seurinck, B. Pavie, et al. 2020. Osteopontin Expression Identifies a Subset of Recruited Macrophages Distinct from Kupffer Cells in the Fatty Liver. Immunity 53: 641–657.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuchs CD, Simbrunner B, Baumgartner M, Campell C, Reiberger T, Trauner M. 2024 Bile acid metabolism and signaling in liver disease. Journal of Hepatology

Jia, W., G. Xie, and W. Jia. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews Gastroenterology & Hepatology 15: 111–128.

Article  CAS  Google Scholar 

Goodwin, B., S.A. Jones, R.R. Price, M.A. Watson, D.D. McKee, L.B. Moore, et al. 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Molecular Cell 6: 517–526.

Article  CAS  PubMed  Google Scholar 

Jiao, N., S.S. Baker, A. Chapa-Rodriguez, W. Liu, C.A. Nugent, M. Tsompana, et al. 2018. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67: 1881–1891.

Article  CAS  PubMed  Google Scholar 

Ignacio Barrasa, J., N. Olmo, P. Perez-Ramos, A. Santiago-Gomez, E. Lecona, J. Turnay, et al. 2011. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells. Apoptosis 16: 1054–1067.

Article  PubMed  Google Scholar 

Spivey, J.R., S.F. Bronk, and G.J. Gores. 1993. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. Journal of Clinical Investigation 92: 17–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., I.L. Csanaky, L.D. Lehman-McKeeman, and C.D. Klaassen. 2011. Loss of organic anion transporting polypeptide 1a1 increases deoxycholic acid absorption in mice by increasing intestinal permeability. Toxicological Sciences 124: 251–260.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitsuyoshi, H., T. Nakashima, Y. Sumida, T. Yoh, Y. Nakajima, H. Ishikawa, et al. 1999. Ursodeoxycholic acid protects hepatocytes against oxidative injury via induction of antioxidants. Biochemical and Biophysical Research Communications 263: 537–542.

Article  CAS  PubMed  Google Scholar 

Konigshofer, P., K. Brusilovskaya, O. Petrenko, B.S. Hofer, P. Schwabl, M. Trauner, et al. 2021. Nuclear receptors in liver fibrosis. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867: 166235.

Article  PubMed  Google Scholar 

Tacke, F., T. Puengel, R. Loomba, and S.L. Friedman. 2023. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. Journal of Hepatology 79: 552–566.

Article  CAS  PubMed  Google Scholar 

Pols, T.W., M. Nomura, T. Harach, G. Lo Sasso, M.H. Oosterveer, C. Thomas, et al. 2011. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metabolism 14: 747–757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keitel, V., M. Donner, S. Winandy, R. Kubitz, and D. Haussinger. 2008. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochemical and Biophysical Research Communications 372: 78–84.

Article  CAS  PubMed  Google Scholar 

Mouzaki, M., E.M. Comelli, B.M. Arendt, J. Bonengel, S.K. Fung, S.E. Fischer, et al. 2013. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58: 120–127.

Article  CAS  PubMed  Google Scholar 

Zhu, L., S.S. Baker, C. Gill, W. Liu, R. Alkhouri, R.D. Baker, et al. 2013. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology 57: 601–609.

Article  CAS  PubMed  Google Scholar 

De Minicis, S., C. Rychlicki, L. Agostinelli, S. Saccomanno, C. Candelaresi, L. Trozzi, et al. 2014. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology 59: 1738–1749.

Article  PubMed  Google Scholar 

Hegyi, P., J. Maleth, J.R. Walters, A.F. Hofmann, and S.J. Keely. 2018. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiological Reviews 98: 1983–2023.

Article  CAS  PubMed  Google Scholar 

Ridlon, J.M., S.C. Harris, S. Bhowmik, D.J. Kang, and P.B. Hylemon. 2016. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7: 22–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joyce, S.A., and C.G. Gahan. 2017. Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota. Digestive Diseases 35: 169–177.

Article  PubMed  Google Scholar 

Verbeke, L., R. Farre, B. Verbinnen, K. Covens, T. Vanuytsel, J. Verhaegen, et al. 2015. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. American Journal of Pathology 185: 409–419.

Article  CAS  PubMed  Google Scholar 

Takahashi, Y., and T. Fukusato. 2014. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology 20: 15539–15548.

Article  PubMed  PubMed Central  Google Scholar 

Ichimura-Shimizu, M., K. Omagari, M. Yamashita, and K. Tsuneyama. 2021. Development of a novel mouse model of diet-induced nonalcoholic steatohepatitis-related progressive bridging fibrosis. Bioscience, Biotechnology, and Biochemistry 85: 941–947.

Article  PubMed  Google Scholar 

Tada, Y., K. Kasai, N. Makiuchi, N. Igarashi, K. Kani, S. Takano, et al. 2022. Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis. International Journal of Molecular Sciences 23 (21): 13251.

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif