Younossi, Z., Q.M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, et al. 2018. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nature Reviews Gastroenterology & Hepatology 15: 11–20.
Chalasani, N., Z. Younossi, J.E. Lavine, M. Charlton, K. Cusi, M. Rinella, et al. 2018. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67: 328–357.
Kazankov, K., S.M.D. Jorgensen, K.L. Thomsen, H.J. Moller, H. Vilstrup, J. George, et al. 2019. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nature Reviews Gastroenterology & Hepatology 16: 145–159.
Reid, D.T., J.L. Reyes, B.A. McDonald, T. Vo, R.A. Reimer, and B. Eksteen. 2016. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation. PLoS ONE 11: e0159524.
Article CAS PubMed PubMed Central Google Scholar
Daemen, S., A. Gainullina, G. Kalugotla, L. He, M.M. Chan, J.W. Beals, et al. 2021. Dynamic Shifts in the Composition of Resident and Recruited Macrophages Influence Tissue Remodeling in NASH. Cell Reports 34: 108626.
Article CAS PubMed Google Scholar
Itoh, M., H. Kato, T. Suganami, K. Konuma, Y. Marumoto, S. Terai, et al. 2013. Hepatic crown-like structure: A unique histological feature in non-alcoholic steatohepatitis in mice and humans. PLoS ONE 8: e82163.
Article PubMed PubMed Central Google Scholar
Itoh, M., T. Suganami, H. Kato, S. Kanai, I. Shirakawa, T. Sakai, et al. 2017. CD11c+ resident macrophages drive hepatocyte death-triggered liver fibrosis in a murine model of nonalcoholic steatohepatitis. JCI Insight 2 (22): e92902.
Article PubMed PubMed Central Google Scholar
Jaitin, D.A., L. Adlung, C.A. Thaiss, A. Weiner, B. Li, H. Descamps, et al. 2019. Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell 178: 686–698.
Article CAS PubMed PubMed Central Google Scholar
Remmerie, A., L. Martens, T. Thone, A. Castoldi, R. Seurinck, B. Pavie, et al. 2020. Osteopontin Expression Identifies a Subset of Recruited Macrophages Distinct from Kupffer Cells in the Fatty Liver. Immunity 53: 641–657.
Article CAS PubMed PubMed Central Google Scholar
Fuchs CD, Simbrunner B, Baumgartner M, Campell C, Reiberger T, Trauner M. 2024 Bile acid metabolism and signaling in liver disease. Journal of Hepatology
Jia, W., G. Xie, and W. Jia. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews Gastroenterology & Hepatology 15: 111–128.
Goodwin, B., S.A. Jones, R.R. Price, M.A. Watson, D.D. McKee, L.B. Moore, et al. 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Molecular Cell 6: 517–526.
Article CAS PubMed Google Scholar
Jiao, N., S.S. Baker, A. Chapa-Rodriguez, W. Liu, C.A. Nugent, M. Tsompana, et al. 2018. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67: 1881–1891.
Article CAS PubMed Google Scholar
Ignacio Barrasa, J., N. Olmo, P. Perez-Ramos, A. Santiago-Gomez, E. Lecona, J. Turnay, et al. 2011. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells. Apoptosis 16: 1054–1067.
Spivey, J.R., S.F. Bronk, and G.J. Gores. 1993. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. Journal of Clinical Investigation 92: 17–24.
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y., I.L. Csanaky, L.D. Lehman-McKeeman, and C.D. Klaassen. 2011. Loss of organic anion transporting polypeptide 1a1 increases deoxycholic acid absorption in mice by increasing intestinal permeability. Toxicological Sciences 124: 251–260.
Article CAS PubMed PubMed Central Google Scholar
Mitsuyoshi, H., T. Nakashima, Y. Sumida, T. Yoh, Y. Nakajima, H. Ishikawa, et al. 1999. Ursodeoxycholic acid protects hepatocytes against oxidative injury via induction of antioxidants. Biochemical and Biophysical Research Communications 263: 537–542.
Article CAS PubMed Google Scholar
Konigshofer, P., K. Brusilovskaya, O. Petrenko, B.S. Hofer, P. Schwabl, M. Trauner, et al. 2021. Nuclear receptors in liver fibrosis. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867: 166235.
Tacke, F., T. Puengel, R. Loomba, and S.L. Friedman. 2023. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. Journal of Hepatology 79: 552–566.
Article CAS PubMed Google Scholar
Pols, T.W., M. Nomura, T. Harach, G. Lo Sasso, M.H. Oosterveer, C. Thomas, et al. 2011. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metabolism 14: 747–757.
Article CAS PubMed PubMed Central Google Scholar
Keitel, V., M. Donner, S. Winandy, R. Kubitz, and D. Haussinger. 2008. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochemical and Biophysical Research Communications 372: 78–84.
Article CAS PubMed Google Scholar
Mouzaki, M., E.M. Comelli, B.M. Arendt, J. Bonengel, S.K. Fung, S.E. Fischer, et al. 2013. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58: 120–127.
Article CAS PubMed Google Scholar
Zhu, L., S.S. Baker, C. Gill, W. Liu, R. Alkhouri, R.D. Baker, et al. 2013. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology 57: 601–609.
Article CAS PubMed Google Scholar
De Minicis, S., C. Rychlicki, L. Agostinelli, S. Saccomanno, C. Candelaresi, L. Trozzi, et al. 2014. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology 59: 1738–1749.
Hegyi, P., J. Maleth, J.R. Walters, A.F. Hofmann, and S.J. Keely. 2018. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiological Reviews 98: 1983–2023.
Article CAS PubMed Google Scholar
Ridlon, J.M., S.C. Harris, S. Bhowmik, D.J. Kang, and P.B. Hylemon. 2016. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7: 22–39.
Article CAS PubMed PubMed Central Google Scholar
Joyce, S.A., and C.G. Gahan. 2017. Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota. Digestive Diseases 35: 169–177.
Verbeke, L., R. Farre, B. Verbinnen, K. Covens, T. Vanuytsel, J. Verhaegen, et al. 2015. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. American Journal of Pathology 185: 409–419.
Article CAS PubMed Google Scholar
Takahashi, Y., and T. Fukusato. 2014. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World Journal of Gastroenterology 20: 15539–15548.
Article PubMed PubMed Central Google Scholar
Ichimura-Shimizu, M., K. Omagari, M. Yamashita, and K. Tsuneyama. 2021. Development of a novel mouse model of diet-induced nonalcoholic steatohepatitis-related progressive bridging fibrosis. Bioscience, Biotechnology, and Biochemistry 85: 941–947.
Tada, Y., K. Kasai, N. Makiuchi, N. Igarashi, K. Kani, S. Takano, et al. 2022. Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis. International Journal of Molecular Sciences 23 (21): 13251.
Comments (0)