Reclassification of Takeuchi and Hatano 1998 as a Later Heterotypic Synonym of Takeuchi and Hatano 1998

Orla-Jensen S (1919) The lactic acid bacteria Copenhagen. Host & Sons, Houston

Google Scholar 

Collins MD, Jones D, Kroppenstedt RM (1983) Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. Rev.; comb. nov. Syst Appl Microbiol 4(1):65–78. https://doi.org/10.1016/S0723-2020(83)80034-4

Article  CAS  PubMed  Google Scholar 

Takeuchi M, Hatano K (1998) Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Evol Microbiol 48(3):739–747. https://doi.org/10.1099/00207713-48-3-739

Article  CAS  Google Scholar 

Fidalgo C, Riesco R, Henriques I, Trujillo ME, Alves A (2016) Microbacterium diaminobutyricum sp. nov., isolated from Halimione portulacoides, which contains diaminobutyric acid in its cell wall, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 66:4492–4500. https://doi.org/10.1099/ijsem.0.001379

Article  CAS  PubMed  Google Scholar 

Takeuchi M, Hatano K (1998) Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Evol Microbiol 48:973–982. https://doi.org/10.1099/00207713-48-3-973

Article  CAS  Google Scholar 

Lee SD, Yang HL, Kim IS (2023) Four new Microbacterium species isolated from seaweeds and reclassification of five Microbacterium species with a proposal of Paramicrobacterium gen. nov. under a genome-based framework of the genus Microbacterium. Front Microbiol 14:1299950. https://doi.org/10.3389/fmicb.2023.1299950

Article  PubMed  PubMed Central  Google Scholar 

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055. https://doi.org/10.1101/gr.186072.114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seemann T (2013) barrnap 0.9: rapid ribosomal RNA prediction. https://github.com/tseemann/barrnap

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

Article  CAS  PubMed  PubMed Central  Google Scholar 

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. https://doi.org/10.1007/bf01734359

Article  CAS  PubMed  Google Scholar 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  CAS  PubMed  Google Scholar 

Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20(4):406–416. https://doi.org/10.1093/sysbio/20.4.406

Article  Google Scholar 

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

Article  CAS  PubMed  Google Scholar 

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.2307/2408678

Article  PubMed  Google Scholar 

Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

Book  Google Scholar 

Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ 3:e1319. https://doi.org/10.7717/peerj.1319

Article  PubMed  PubMed Central  Google Scholar 

Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, Fink I, Pan JN, Yousef M, Fogarty EC, Trigodet F, Watson AR, Esen ÖC, Moore RM, Clayssen Q, Lee MD, Kivenson V, Graham ED, Merrill BD, Karkman A, Blankenberg D, Eppley JM, Sjödin A, Scott JJ, Vázquez-Campos X, McKay LJ, McDaniel EA, Stevens SLR, Anderson RE, Fuessel J, Fernandez-Guerra A, Maignien L, Delmont TO, Willis AD (2021) Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 6(1):3–6. https://doi.org/10.1038/s41564-020-00834-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119. https://doi.org/10.1186/1471-2105-11-119

Article  CAS  Google Scholar 

Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee MD (2019) GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35(20):4162–4164. https://doi.org/10.1093/bioinformatics/btz188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

Article  CAS  PubMed  PubMed Central  Google Scholar 

Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182. https://doi.org/10.1038/s41467-019-10210-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. https://doi.org/10.1093/nar/gkm160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. https://doi.org/10.1093/molbev/msv150

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

Article  Google Scholar 

Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M (2017) PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 33(18):2946–2947. https://doi.org/10.1093/bioinformatics/btx324

Article  CAS  PubMed  Google Scholar 

Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8(1):12–24. https://doi.org/10.1039/C5AY02550H

Article  Google Scholar 

Comments (0)

No login
gif