Polyphasic Taxonomic Analysis of gen. nov., sp. nov., Isolated from Seawater

Ghosh D, Saha M, Sana B, Mukherjee J (2005) Marine enzymes. Adv Biochem Eng Biotechnol 96:189–218. https://doi.org/10.1007/b135785

Article  CAS  Google Scholar 

Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934. https://doi.org/10.3390/md8061920

Article  PubMed  PubMed Central  CAS  Google Scholar 

Birolli WG, Lima RN, Porto ALM (2019) Applications of marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Front Microbiol 10:1453. https://doi.org/10.3389/fmicb.2019.01453

Article  PubMed  PubMed Central  Google Scholar 

Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY (2019) Coral and coral-associated microorganisms: a prolific source of potential bioactive natural products. Mar Drugs 17:468. https://doi.org/10.3390/md1708046

Article  PubMed  PubMed Central  CAS  Google Scholar 

Su H, Xiao Z, Yu K, Huang Q, Wang G, Wang Y, Liang J, Huang W, Huang X, Wei F, Chen B (2020) Diversity of cultivable protease-producing bacteria and their extracellular proteases associated to scleractinian corals. PeerJ 8:e9055. https://doi.org/10.7717/peerj.9055

Article  PubMed  PubMed Central  Google Scholar 

Zhang DF, He W, Shao Z, Ahmed I, Zhang Y, Li WJ, Zhao Z (2023) Phylotaxonomic assessment based on four core gene sets and proposal of a genus definition among the families Paracoccaceae and Roseobacteraceae. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.006156

Article  PubMed  PubMed Central  Google Scholar 

Göker M (2022) Filling the gaps: missing taxon names at the ranks of class, order and family. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005638

Article  PubMed  Google Scholar 

Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int J Syst Bacteriol 38:321–325. https://doi.org/10.1099/00207713-38-3-321

Article  Google Scholar 

Garrity GM, Bell JA, Lilburn T (2005) Class I. Alphaproteobacteria class. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York

Google Scholar 

Giovannoni SJ, Rappé M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman D (ed) Microbial ecology of the oceans. Wiley, New York, pp 47–84

Google Scholar 

Foesel BU, Drake HL, Schramm A (2011) Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Syst Appl Microbiol 34:498–502. https://doi.org/10.1016/j.syapm.2011.08.006

Article  PubMed  CAS  Google Scholar 

Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC (2014) The Family Rhodobacteraceae. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, New York, pp 439–512

Book  Google Scholar 

Colwell RR (1970) Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433. https://doi.org/10.1128/jb.104.1.410-433.1970

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yoon J, Lee KC, Lee JS (2016) Cribrihabitans pelagius sp. nov., a marine alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 66:3195–3200. https://doi.org/10.1099/ijsem.0.001171

Article  PubMed  CAS  Google Scholar 

Power DA, Johnson JA (2009) Difco™ and BBL™ manual: manual of microbiological culture media, 2nd edn. Becton Dickinson and Company, Sparks, pp 359–360 (ISBN 0-9727207-1-5)

Yoon J (2022) Spongiibacter thalassae sp. Nov., a marine gammaproteobacterium isolated from seawater. Arch Microbiol 204:273. https://doi.org/10.1007/s00203-022-02888-9

Article  PubMed  CAS  Google Scholar 

Tittsler RP, Sandholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580. https://doi.org/10.1128/jb.31.6.575-580

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD, Pyshkin A, Sirotkin A, Sirotkin Y, Stepanauskas R, Clingenpeel SR, Woyke T, McLean JS, Lasken R, Tesler G, Alekseyev MA, Pevzner PA (2013) Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol 20:714–737. https://doi.org/10.1089/cmb.2013.0084

Article  PubMed  PubMed Central  CAS  Google Scholar 

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.7287/peerj.preprints.554v2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim D, Park S, Chun J (2021) Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 59:476–480. https://doi.org/10.1007/s12275-021-1154-0

Article  PubMed  CAS  Google Scholar 

Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G + C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. https://doi.org/10.1099/ijs.0.056994-0

Article  PubMed  CAS  Google Scholar 

Segata N, Börmigen D, Morgan XC, Huttenhower C (2013) PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4:2304. https://doi.org/10.1038/ncomms3304

Article  PubMed  CAS  Google Scholar 

Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, Meyer SD, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

Article  PubMed  CAS  Google Scholar 

Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264. https://doi.org/10.1128/jb.187.18.6258-6264.2005

Article  PubMed  PubMed Central  CAS  Google Scholar 

Luo C, Rodriguez RLM, Konstantinidis KT (2014) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42:e73. https://doi.org/10.1093/nar/gku16

Article  PubMed  PubMed Central  CAS  Google Scholar 

Konstantinidis KT, Rosselló-Móra R, Amann R (2017) Uncultivated microbes in need of their own taxonomy. ISME J 11:2399–2406. https://doi.org/10.1038/ismej.2017.113

Article  PubMed  PubMed Central  Google Scholar 

Ulbri

Comments (0)

No login
gif