Bashagaluke JB, Logah V, Opoku A, Sarkodie-Addo J, Quansah C (2018) Soil nutrient loss through erosion: impact of different cropping systems and soil amendments in Ghana. PLoS ONE 13:e0208250. https://doi.org/10.1371/journal.pone.0208250
Article PubMed PubMed Central Google Scholar
Meyer LD, Wischmeier WH (1969) Mathematical simulation of the process of soil erosion by water. Trans ASAE 12:754–758. https://doi.org/10.13031/2013.38945
Singh RK, Chaudhary RS, Somasundaram J, Sinha NK, Mohanty M et al (2020) Soil and nutrient losses under different crop covers in vertisols of Central India. J Soils Sediments 20:609–620. https://doi.org/10.1007/s11368-019-02437-w
Bhattacharyya R, Ghosh BN, Mishra PK, Mandal B, Rao CS et al (2015) Soil degradation in India: challenges and potential solutions. Sustainability 7:3528–3570. https://doi.org/10.3390/su7043528
Härdtle W et al (2004) Relationship between pH-values and nutrient availability in forest soils–the consequences for the use of ecograms in forest ecology. Flora-Morphol Distribution Functional Ecol of Plants 199:134–142. https://doi.org/10.1078/0367-2530-00142
Jacobsen CS, Hjelmsø MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotechnol 27:15–20. https://doi.org/10.1016/j.copbio.2013.09.003
Article CAS PubMed Google Scholar
Tallon R, Bressollier P, Urdaci MC (2003) Isolation and characterization of two exopolysaccharides produced by lactobacillus plantarum EP56. Res Microbiol 154:705–712. https://doi.org/10.1016/j.resmic.2003.09.006
Article CAS PubMed Google Scholar
Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398. https://doi.org/10.1016/j.tibtech.2011.03.008
Article CAS PubMed Google Scholar
Berne C, Ducret A, Hardy GG, Brun YV (2015) Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. In: Ghannoum M, Parsek M, Whitely M, Mukherjee PK (eds) Microbial biofilms. ASM Press, Washington, DC, pp 163–199. https://doi.org/10.1128/microbiolspec.MB-0018-2015
Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harb Perspect Med 3:a010306. https://doi.org/10.1101/cshperspect.a010306
Article CAS PubMed PubMed Central Google Scholar
Gressler LT, Vargas AC, Costa MM, Sutili FJ, Schwab M et al (2015) Biofilm formation by Rhodococcus equi and putative association with macrolide resistance. Pesquisa Veterinária Brasileira 35:835–841. https://doi.org/10.1590/S0100-736X2015001000003
Berk V, Fong JC, Dempsey GT, Develioglu ON, Zhuang X, Liphardt J et al (2012) Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337:236–239. https://doi.org/10.1126/science.1222981
Article CAS PubMed PubMed Central Google Scholar
Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58:1009–1022. https://doi.org/10.1002/jobm.201800309
Article CAS PubMed Google Scholar
Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11:e0155026. https://doi.org/10.1371/journal.pone.0155026
Article CAS PubMed PubMed Central Google Scholar
Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. https://doi.org/10.1099/mic.0.037143-0
Article CAS PubMed Google Scholar
Deka P, Goswami G, Das P, Gautom T, Chowdhury N et al (2019) Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation. Mol Biol Rep 46:1079–1091. https://doi.org/10.1007/s11033-018-4566-0
Article CAS PubMed Google Scholar
Li Y, Dick WA, Tuovinen OH (2003) Evaluation of fluorochromes for imaging bacteria in soil. Soil Biol and Biochem 35:737–744. https://doi.org/10.1016/S0038-0717(02)00196-7
Bagui P, Pal P, Biswas N, Chowdhury B, Chakraborty B et al (2025) Priestia and Phytobacter sp. prevent membrane damage and electrolyte leakage from Capsicum annuum L. seeds subjected to sub-optimal temperature stress. FEMS Microbiol Lett 372:fnaf033. https://doi.org/10.1093/femsle/fnaf033
Article CAS PubMed Google Scholar
Datta M, Aroli S, Karmakar K, Dutta S, Chakravortty D, Varshney U (2019) Development of mCherry tagged UdgX as a highly sensitive molecular probe for specific detection of uracils in DNA. Biochem Biophys Res Commun 518:38–43. https://doi.org/10.1016/j.bbrc.2019.08.005
Article CAS PubMed Google Scholar
Karmakar K, Nair AV, Chandrasekharan G, Garai P, Nath U (2019) Rhizospheric life of Salmonella requires flagella-driven motility and EPS-mediated attachment to organic matter and enables cross-kingdom invasion. FEMS Microbiol Ecol 95:fiz107. https://doi.org/10.1093/femsec/fiz107
Article CAS PubMed Google Scholar
Khulbe K, Karmakar K, Ghosh S, Chandra K, Chakravortty D, Mugesh G (2020) Nanoceria-based phospholipase-mimetic cell membrane disruptive antibiofilm agents. ACS Appl Bio Mater 3:4316–4328. https://doi.org/10.1021/acsabm.0c00363
Article CAS PubMed Google Scholar
Maity P, Roy D, Chowdhury B, Chakraborty B, Anand N et al (2024) Biopriming with EPS-producing bacteria of Sub-Himalayan-Soil Origin recovers the cold-induced vigor loss in seedlings. Ind J Microbiol. https://doi.org/10.1007/s12088-024-01342-2
Srinandan CS, Elango M, Gnanadhas DP, Chakravortty D (2015) Infiltration of matrix-non-producers weakens the salmonella biofilm and impairs its antimicrobial tolerance and pathogenicity. Front Microbiol 6:1468. https://doi.org/10.3389/fmicb.2015.01468
Article PubMed PubMed Central Google Scholar
Pal S, Kolte V, Biswas N, Pal P, Deb D et al (2025) Members of enterobacterales isolated from the Rice-based cropping system of the sub-Himalayan terai region promote aggregation in soil and improve seed vigor. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-025-02449-1
Pal SC, Chakrabortty R, Roy P, Chowdhuri I, Das B et al (2021) Changing climate and land use of 21st century influences soil erosion in India. Gondwana Res 94:164–185. https://doi.org/10.1016/j.gr.2021.02.021
National Bureau of Soil Survey and Land Use Planning (NBSS & LUP) (2013) Annual Report 2012–2013. National Bureau of Soil Survey and Land Use Planning, Nagpur (ISSN: 0970-9460)
Klik A, Eitzinger J (2010) Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. J Agric Sci 148:529–541. https://doi.org/10.1017/S0021859610000158
Schulze ED, Freibauer A (2005) Carbon unlocked from soils. Nature 437:205–206. https://doi.org/10.1038/437205a
Article CAS PubMed Google Scholar
Montanarella L, Vargas R (2012) Global governance of soil resources as a necessary condition for sustainable development. Curr Opin Environ Sustain. https://doi.org/10.1016/j.cosust.2012.06.007
Mandal D, Sharda VN (2013) Appraisal of soil erosion risk in the eastern himalayan region of India for soil conservation planning. Land Degrad Dev 24:430–437. https://doi.org/10.1002/ldr.1139
Trunk T, Khalil HS, Leo JC (2018) Bacterial autoaggregation. AIMS Microbiol 4:140. https://doi.org/10.3934/microbiol.2018.1.140
Article CAS PubMed PubMed Central Google Scholar
Li L, Gu W, Li J, Li C, Xie T et al (2018) Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in
Comments (0)