Bacteria in the Phylum Degrade Nicotine Through the Variant of Pyridine and Pyrrolidine Pathway

Fang J, Lee K, Sejpal N (2017) The China National Tobacco Corporation: from domestic to global dragon? Glob Public Health 12(3):315–334. https://doi.org/10.1080/17441692.2016.1241293

Article  PubMed  Google Scholar 

Benowitz NL (2010) Nicotine addiction. New Engl J Med 362(24):2295–2303. https://doi.org/10.1056/NEJMra0809890

Article  CAS  PubMed  Google Scholar 

Schievelbein H (1982) Nicotine, resorption and fate. Pharmacol Ther 18(2):233–248. https://doi.org/10.1016/0163-7258(82)90068-7

Article  CAS  PubMed  Google Scholar 

Schenk S, Hoelz A, Krauss B, Decker K (1998) Gene structures and properties of enzymes of the plasmid-encoded nicotine catabolism of Arthrobacter nicotinovorans. J Mol Biol 284(5):1323–1339. https://doi.org/10.1006/jmbi.1998.2227

Article  CAS  PubMed  Google Scholar 

Briški F, Horgas N, Vuković M, Gomzi Z (2004) Kinetic analysis of aerobic composting of tobacco industry solid waste. In: Sikdar SK, Glavič P, Jain R (eds) Technological choices for sustainability. Springer, Berlin, pp 127–138

Chapter  Google Scholar 

Doolittle DJ, Winegar R, Lee CK, Caldwell WS, Hayes AW, de Bethizy JD (1995) The genotoxic potential of nicotine and its major metabolites. Mutat Res 344(3–4):95–102. https://doi.org/10.1016/0165-1218(95)00037-2

Article  CAS  PubMed  Google Scholar 

Brandsch R (2006) Microbiology and biochemistry of nicotine degradation. Appl Microbiol Biotechnol 69(5):493–498. https://doi.org/10.1007/s00253-005-0226-0

Article  CAS  PubMed  Google Scholar 

Li H, Li X, Duan Y, Zhang KQ, Yang J (2010) Biotransformation of nicotine by microorganism: the case of Pseudomonas spp. Appl Microbiol Biotechnol 86(1):11–17. https://doi.org/10.1007/s00253-009-2427-4

Article  CAS  PubMed  Google Scholar 

Hochstein LI, Rittenberg SC (1959) The bacterial oxidation of nicotine. I. Nicotine oxidation by cell-free preparations. J Biol Chem 234(1):151–155

Article  CAS  PubMed  Google Scholar 

Wada E, Yamasaki K (1953) Mechanism of microbial degradation of nicotine. Science 117(3033):152–153. https://doi.org/10.1126/science.117.3033.152

Article  CAS  PubMed  Google Scholar 

Wang SN, Liu Z, Xu P (2009) Biodegradation of nicotine by a newly isolated Agrobacterium sp. strain S33. J Appl Microbiol 107(3):838–847. https://doi.org/10.1111/j.1365-2672.2009.04259.x

Article  CAS  PubMed  Google Scholar 

Qiu J, Ma Y, Wen Y, Chen L, Wu L, Liu W (2012) Functional identification of two novel genes from Pseudomonas sp. strain HZN6 involved in the catabolism of nicotine. Appl Environ Microbiol 78(7):2154–2160. https://doi.org/10.1128/AEM.07025-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hritcu L, Ionita R, Motei DE, Babii C, Stefan M, Mihasan M (2017) Nicotine versus 6-hydroxy-l-nicotine against chlorisondamine induced memory impairment and oxidative stress in the rat hippocampus. Biomed Pharmacother 86:102–108. https://doi.org/10.1016/j.biopha.2016.12.008

Article  CAS  PubMed  Google Scholar 

Li J, Wang J, Li S, Yi F, Xu J, Shu M et al (2019) Co-occurrence of functional modules derived from nicotine-degrading gene clusters confers additive effects in Pseudomonas sp. JY-Q Appl Microbiol Biotechnol 103(11):4499–4510. https://doi.org/10.1007/s00253-019-09800-4

Article  CAS  PubMed  Google Scholar 

Tang H, Wang L, Wang W, Yu H, Zhang K, Yao Y et al (2013) Systematic unraveling of the unsolved pathway of nicotine degradation in Pseudomonas. PLoS Genet 9(10):e1003923. https://doi.org/10.1371/journal.pgen.1003923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang R, Yi J, Shang J, Yu W, Li Z, Huang H et al (2019) 6-Hydroxypseudooxynicotine dehydrogenase delivers electrons to electron transfer flavoprotein during nicotine degradation by Agrobacterium tumefaciens S33. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00454-19

Article  PubMed  PubMed Central  Google Scholar 

Brandsch R, Decker K (1984) Isolation and partial characterization of plasmid DNA from Arthrobacter oxidans. Arch Microbiol 138(1):15–17. https://doi.org/10.1007/BF00425400

Article  CAS  PubMed  Google Scholar 

Igloi GL, Brandsch R (2003) Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J Bacteriol 185(6):1976–1986. https://doi.org/10.1128/JB.185.6.1976-1986.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganas P, Sachelaru P, Mihasan M, Igloi GL, Brandsch R (2008) Two closely related pathways of nicotine catabolism in Arthrobacter nicotinovorans and Nocardioides sp. strain JS614. Arch Microbiol 189(5):511–517. https://doi.org/10.1007/s00203-007-0340-8

Article  CAS  PubMed  Google Scholar 

Cobzaru C, Ganas P, Mihasan M, Schleberger P, Brandsch R (2011) Homologous gene clusters of nicotine catabolism, including a new omega-amidase for alpha-ketoglutaramate, in species of three genera of Gram-positive bacteria. Res Microbiol 162(3):285–291. https://doi.org/10.1016/j.resmic.2011.01.001

Article  CAS  PubMed  Google Scholar 

Luo YJ, Chen YR, Li XM, Tang G, Wei P (2007) Study on streptomycetes degradation of nicotine and chlorogenic acid in tobacco. Acta Microbiologica Sincia 47(6):1095–1097. https://doi.org/10.3321/j.issn:0001-6209.2007.06.030

Article  CAS  Google Scholar 

Gong XW, Yang JK, Duan YQ, Dong JY, Zhe W, Wang L et al (2009) Isolation and characterization of Rhodococcus sp. Y22 and its potential application to tobacco processing. Res Microbiol 160(3):200–204. https://doi.org/10.1016/j.resmic.2009.02.004

Article  CAS  PubMed  Google Scholar 

Liu JL, Ma GH, Chen T, Hou Y, Yang SH, Zhang KQ et al (2015) Nicotine-degrading microorganisms and their potential applications. Appl Microbiol Biotechnol 99(9):3775–3785. https://doi.org/10.1007/s00253-015-6525-1

Article  CAS  PubMed  Google Scholar 

Crombie AT, Khawand ME, Rhodius VA, Fengler KA, Miller MC, Whited GM et al (2015) Regulation of plasmid-encoded isoprene metabolism in Rhodococcus, a representative of an important link in the global isoprene cycle. Environ Microbiol 17(9):3314–3329. https://doi.org/10.1111/1462-2920.12793

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu JG, Ma Y, Chen LS, Wu LF, Wen YZ, Liu WP (2011) A sirA-like gene, sirA2, is essential for 3-succinoyl-pyridine metabolism in the newly isolated nicotine-degrading Pseudomonas sp. HZN6 strain. Appl Microbiol Biotechnol 92(5):1023–1032. https://doi.org/10.1007/s00253-011-3353-9

Article  CAS  PubMed  Google Scholar 

Wang MZ, Yang GQ, Wang X, Yao YL, Min H, Lu ZM (2011) Nicotine degradation by two novel bacterial isolates of Acinetobacter sp TW and Sphingomonas sp TY and their responses in the presence of neonicotinoid insecticides. World J Microb Biotechnol 27(7):1633–1640. https://doi.org/10.1007/s11274-010-0617-y

Article  CAS  Google Scholar 

Ma Y, Wei Y, Qiu JG, Wen RT, Hong J, Liu WP (2014) Isolation, transposon mutagenesis, and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. Appl Microbiol Biotechnol 98(6):2625–2636. https://doi.org/10.1007/s00253-013-5207-0

Article  CAS  PubMed  Google Scholar 

Wang HX, Zhi XY, Qiu JG, Shi LX, Lu ZM (2017) Characterization of a novel nicotine degradation gene cluster in TY and its evolutionary analysis. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00337

Article 

Comments (0)

No login
gif