Hennigan JN, Lynch MD (2022) The past, present, and future of enzyme-based therapies. Drug Discovery Today 27(1):117–133. https://doi.org/10.1016/j.drudis.2021.09.004
Article CAS PubMed Google Scholar
Shishparenok AN, Gladilina YA, Zhdanov DD (2023) Engineering and expression strategies for optimization of L-asparaginase development and production. Int J Mol Sci 24:15220. https://doi.org/10.3390/ijms242015220
Article CAS PubMed PubMed Central Google Scholar
Vimal A, Kumar A (2022) l-asparaginase: need for an expedition from an enzymatic molecule to antimicrobial drug. Int J Pept Res Ther 28:1–5. https://doi.org/10.1007/s10989-021-10312-x
Douer D, Gökbuget N, Stock W, Boissel N (2022) Optimizing use of L-asparaginase-based treatment of adults with acute lymphoblastic leukemia. Blood Rev 53:100908. https://doi.org/10.1016/j.blre.2021.100908
Article CAS PubMed Google Scholar
Song P, Ye L, Fan J, Li Y, Zeng X, Wang Z, Wang S, Zhang G, Yang P, Cao Z, Ju D (2015) Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget 6(6):3861–3873. https://doi.org/10.18632/oncotarget.2869
Article PubMed PubMed Central Google Scholar
Watanabe A, Miyake K, Nordlund J, Syvänen AC, van der Weyden L, Honda H, Yamasaki N, Nagamachi A, Inaba T, Ikawa T, Urayama KY, Kiyokawa N, Ohara A, Kimura S, Kubota Y, Takita J, Goto H, Sakaguchi K, Minegishi M, Iwamoto S, Inukai T (2022) Association of aberrant ASNS imprinting with asparaginase sensitivity and chromosomal abnormality in childhood BCP-ALL. Blood 136:2319–2333. https://doi.org/10.1182/blood.2019004090
Nguyen HA, Su Y, Zhang JY, Antanasijevic A, Caffrey M, Schalk AM, Liu L, Rondelli D, Oh A, Mahmud DL, Bosland MC, Kajdacsy-Balla A, Peirs S, Lammens T, Mondelaers V, De Moerloose B, Goossens S, Schlicht MJ, Kabirov KK, Lyubimov AV, Merrill BJ, Saunthararajah Y, Van Vlierberghe P, Lavie A (2018) A novel l-Asparaginase with low l-Glutaminase coactivity is highly efficacious against both T- and B-cell acute lymphoblastic leukemias in vivo. Cancer Res 78:1549–1560. https://doi.org/10.1158/0008-5472.CAN-17-2106
Article CAS PubMed PubMed Central Google Scholar
Offman MN, Krol M, Patel N, Krishnan S, Liu J, Saha V, Bates PA (2011) Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood, J Am Soc Hematol 117(5):1614–1621. https://doi.org/10.1182/blood-2010-07-298422
Gholami N, Ebrahimipour GH, Yaghoubi Avini M (2022) A study of the optimization of anti-tumor L-Asparaginase production using bacillus subtilis isolated from the soil of east Azerbaijan province. J Microb Biol 11(44):1–12. https://doi.org/10.22108/bjm.2021.129050.1393
Vachher M, Sen A, Kapila R, Nigam A (2021) Microbial therapeutic enzymes: a promising area of biopharmaceuticals. Curr Res Biotechnol 3:195–208. https://doi.org/10.1016/j.crbiot.2021.05.006
Kar PP, Srivastava A (2018) Immuno-informatics analysis to identify novel vaccine candidates and design of a multi-epitope based vaccine candidate against theileria parasites. Front Immunol 9:2213. https://doi.org/10.3389/fimmu.2018.02213
Article CAS PubMed PubMed Central Google Scholar
Kaliamurthi S, Selvaraj G, Junaid M, Khan A, Gu K, Wei D-Q (2018) Cancer immunoinformatics: a promising era in the development of peptide vaccines for human papillomavirus-induced cervical cancer. Curr Pharm Des 24:3791–3817. https://doi.org/10.2174/1381612824666181106094133
Article CAS PubMed Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
Article CAS PubMed Google Scholar
Imada A, Igarasi S, Nakahama K, Isono M (1973) Asparaginase and glutaminase activities of micro-organisms. J Gen Microbiol 76:85–99. https://doi.org/10.1099/00221287-76-1-85
Article CAS PubMed Google Scholar
Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A (2016) Applications and benefits of thermophilic microorganisms and their enzymes for industrial biotechnology. In: Schmoll M, Dattenböck C (eds) Gene expression systems in fungi: advancements and applications. Springer International Publishing, Cham, pp 459–492
Blachier J, Cleret A, Guerin N, Gil C, Fanjat JM, Tavernier F, Vidault L, Gallix F, Rama N, Rossignol R, Piedrahita D (2023) L-asparaginase anti-tumor activity in pancreatic cancer is dependent on its glutaminase activity and resistance is mediated by glutamine synthetase. Experimental Cell Res 426(2):113568. https://doi.org/10.1016/j.yexcr.2023.113568
Kuo MT, Chen HHW, Feun LG, Savaraj N (2021) Targeting the proline-glutamine-asparagine-arginine metabolic axis in amino acid starvation cancer therapy. Pharmaceuticals 14:72. https://doi.org/10.3390/ph14010072
Article CAS PubMed PubMed Central Google Scholar
Choi YK, Park KG (2018) Targeting glutamine metabolism for cancer treatment. Biomol & Therapeutics 26:19–28. https://doi.org/10.4062/biomolther.2017.178
Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukharev S, Rempe SB, Weinstein JN (2014) The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood 123(23):3596–3606. https://doi.org/10.1182/blood-2013-10-535112
Article CAS PubMed PubMed Central Google Scholar
Van Trimpont M, Schalk AM, Hofkens K, Peeters E, T’Sas S, Vandemeulebroecke K, Su Y, De Loera A, Garcia A, Chen H, Lammens T, Van Vlierberghe P, Goossens S, Lavie A (2025) A human-like glutaminase-free asparaginase is highly efficacious in ASNSlow leukemia and solid cancer mouse xenograft models. Cancer Lett 611:217404. https://doi.org/10.1016/j.canlet.2024.217404
Tsegaye K, Tsehai BA, Getie B (2024) Desirable L-asparaginases for treating cancer and current research trends. Front Microbiol 15:1269282. https://doi.org/10.3389/fmicb.2024.1269282
Article PubMed PubMed Central Google Scholar
Das CA, Kumar VG, Dhas TS, Karthick V, Kumar CV (2023) Nanomaterials in anticancer applications and their mechanism of action-A review. Nanomed Nanotechnol Biol Med 47:102613. https://doi.org/10.1016/j.nano.2022.102613
Loch JI, Jaskolski M (2021) Structural and biophysical aspects of l-asparaginases: a growing family with amazing diversity. IUCrJ 8:514–531. https://doi.org/10.1107/S2052252521006011
Article CAS PubMed PubMed Central Google Scholar
Zielezinski A, Loch JI, Karlowski WM, Jaskolski M (2022) Massive annotation of bacterial L-asparaginases reveals their puzzling distribution and frequent gene transfer events. Sci Rep 12:15797. https://doi.org/10.1038/s41598-022-19689-1
Article CAS PubMed PubMed Central Google Scholar
Nguyen HA, Su Y, Lavie A (2016) Structural insight into substrate selectivity of Erwinia chrysanthemi L-asparaginase. Biochemistry 55:1246–1253. https://doi.org/10.1021/acs.biochem.5b01351
Article CAS PubMed Google Scholar
Pieters R, Hunger SP, Boos J, Rizzari C, Silverman L, Baruchel A, Goekbuget N, Schrappe M, Pui CH (2011) L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer 117:238–249. https://doi.org/10.1002/cncr.25489
Article CAS PubMed Google Scholar
Rogers TH, Babensee JE (2010) Altered adherent leukocyte profile on biomaterials in Toll-like receptor 4 deficient mice. Biomaterials 31:594–601. https://doi.org/10.1016/j.biomaterials.2009.09.077
Article CAS PubMed Google Scholar
Lubkowski J, Wlodawer A (2019) Geometric considerations support the double-displacement catalytic mechanism of l-asparaginase, protein science : a publication of the protein. Society 28:1850–1864. https://doi.org/10.1002/pro.3709
Comments (0)