Transcriptomic Response Pathways of Yeast to Crucial Polyphenolic Acids in Rosmarinus Acid Biosynthesis

Li Z, Wang X, Zhang H (2019) Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metab Eng 54:1–11. https://doi.org/10.1016/j.ymben.2019.03.002

Article  CAS  PubMed  Google Scholar 

Marchev AS, Vasileva LV, Amirova KM, Savova MS, Koycheva IK, Balcheva-Sivenova ZP, Vasileva SM, Georgiev MI (2021) Rosmarinic acid—from bench to valuable applications in food industry. Trends Food Sci Technol 117:182–193. https://doi.org/10.1016/j.tifs.2021.03.015

Article  CAS  Google Scholar 

Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S (2020) A review of the anti-inflammatory effects of rosmarinic acid on inflammatory diseases. Front Pharmacol 11:153. https://doi.org/10.3389/fphar.2020.00153

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swamy MK, Sinniah UR, Ghasemzadeh A (2018) Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol 102(18):7775–7793. https://doi.org/10.1007/s00253-018-9223-y

Article  CAS  PubMed  Google Scholar 

Ngo YL, Lau CH, Chua LS (2018) Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem Toxicol 121:687–700. https://doi.org/10.1016/j.fct.2018.09.064

Article  CAS  PubMed  Google Scholar 

Guan H, Luo W, Bao B, Cao Y, Cheng F, Yu S, Fan Q, Zhang L, Wu Q, Shan M (2022) A comprehensive review of rosmarinic acid: from phytochemistry to pharmacology and its new insight. Molecules 27(10):3292. https://doi.org/10.3390/molecules27103292

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beydokhti SS, Stork C, Dobrindt U, Hensel A (2019) Orthosipon stamineus extract exerts inhibition of bacterial adhesion and chaperon-usher system of uropathogenic Escherichia coli—a transcriptomic study. Appl Microbiol Biotechnol 103(20):8571–8584. https://doi.org/10.1007/s00253-019-10120-w

Article  CAS  PubMed  Google Scholar 

Presti-Silva SM, Herlinger AL, Martins-Silva C, Pires RGW (2023) Biochemical and behavioral effects of rosmarinic acid treatment in an animal model of parkinson’s disease induced by MPTP. Behav Brain Res 440:114257. https://doi.org/10.1016/j.bbr.2022.114257

Article  CAS  PubMed  Google Scholar 

Yang M, Zhang X, Qiao O, Ji H, Zhang Y, Han X, Wang W, Li X, Wang J, Guo L, Huang L, Gao W (2023) Rosmarinic acid potentiates and detoxifies tacrine in combination for alzheimer’s disease. Phytomedicine 109:154600. https://doi.org/10.1016/j.phymed.2022.154600

Article  CAS  PubMed  Google Scholar 

Khojasteh A, Mirjalili MH, Alcalde MA, Cusido RM, Eibl R, Palazon J (2020) Powerful plant antioxidants: a new biosustainable approach to the production of rosmarinic acid. Antioxidants 9(12):1273. https://doi.org/10.3390/antiox9121273

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wawrosch C, Zotchev SB (2021) Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook. Appl Microbiol Biotechnol 105(18):6649–6668. https://doi.org/10.1007/s00253-021-11539-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hippolyte I, Marin B, Baccou J, Jonard R (1992) Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112

Article  CAS  PubMed  Google Scholar 

Yeo HJ, Kwon MJ, Han SY, Jeong JC, Kim CY, Park SU, Park CH (2023) Effects of carbohydrates on rosmarinic acid production and in vitro antimicrobial activities in hairy root cultures of Agastache rugosa. Plants 12(4):797. https://doi.org/10.3390/plants12040797

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Geng L, Zhang Y, Jones JA, Zhang M, Chen Y, Tan R, Koffas MAG, Wang Z, Zhao S (2022) De novo biosynthesis of salvianolic acid B in Saccharomyces cerevisiae engineered with the rosmarinic acid biosynthetic pathway. J Agric Food Chem 70(7):2290–2302. https://doi.org/10.1021/acs.jafc.1c06329

Article  CAS  PubMed  Google Scholar 

Wang L, Wang H, Chen J, Qin Z, Yu S, Zhou J (2023) Coordinating caffeic acid and salvianic acid A pathways for efficient production of rosmarinic acid in Escherichia coli. Metab Eng 76:29–38. https://doi.org/10.1016/j.ymben.2023.01.002

Article  CAS  PubMed  Google Scholar 

Kim KH, Janiak V, Petersen M (2004) Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Plant Mol Biol 54:311–323. https://doi.org/10.1023/B:PLAN.0000036367.03056.b2

Article  CAS  PubMed  Google Scholar 

Babaei M, Borja Zamfir GM, Chen X, Christensen HB, Kristensen M, Nielsen J, Borodina I (2020) Metabolic engineering of Saccharomyces cerevisiae for rosmarinic acid production. ACS Synth Biol 9(8):1978–1988. https://doi.org/10.1021/acssynbio.0c00048

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou P, Yue C, Zhang Y, Li Y, Da X, Zhou X, Ye L (2022) Alleviation of the byproducts formation enables highly efficient biosynthesis of rosmarinic acid in Saccharomyces cerevisiae. J Agric Food Chem 70(16):5077–5087. https://doi.org/10.1021/acs.jafc.2c01179

Article  CAS  PubMed  Google Scholar 

Bloch SE, Schmidt-Dannert C (2014) Construction of a chimeric biosynthetic pathway for the de novo biosynthesis of rosmarinic acid in Escherichia coli. ChemBioChem 15(16):2393–2401. https://doi.org/10.1002/cbic.201402275

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romero-Suarez D, Keasling JD, Jensen MK (2022) Supplying plant natural products by yeast cell factories. Curr Opin Green Sustian Chem 33:100567. https://doi.org/10.1016/j.cogsc.2021.100567

Article  CAS  Google Scholar 

Chen R, Gao J, Yu W, Chen X, Zhai X, Chen Y, Zhang L, Zhou YJ (2022) Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nat Chem Biol 18(5):520–529. https://doi.org/10.1038/s41589-022-01014-6

Article  CAS  PubMed  Google Scholar 

Adeboye PT, Bettiga M, Olsson L (2014) The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express 4:46. https://doi.org/10.1186/s13568-014-0046-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin D, Gu B, Xiong D, Huang G, Huang X, Liu L, Xiao J (2018) A transcriptomic analysis of Saccharomyces cerevisiae under the stress of 2-phenylethanol. Curr Microbiol 75(8):1068–1076. https://doi.org/10.1007/s00284-018-1488-y

Article  CAS  PubMed  Google Scholar 

Zhou L, Xu Z, Wen Z, Lu M, Wang Z, Zhang Y, Zhou H, Jin M (2021) Combined adaptive evolution and transcriptomic profiles reveal aromatic aldehydes tolerance mechanisms in Yarrowia lipolytica. Bioresour Technol 329:124910. https://doi.org/10.1016/j.biortech.2021.124910

Article  CAS  PubMed  Google Scholar 

Tan H, Chen X, Liang N, Chen R, Chen J, Hu C, Li Q, Li Q, Pei W, Xiao W, Yuan Y, Chen W, Zhang L (2019) Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast. J Exp Bot 70(18):4819–4834. https://doi.org/10.1093/jxb/erz211

Article  CAS  PubMed  Google Scholar 

Borja GM, Rodriguez A, Campbell K, Borodina I, Chen Y, Nielsen J (2019) Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microb Cell Fact 18(1):191. https://doi.org/10.1186/s12934-019-1244-4

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif