Huang Q, Zhang Y, Zhang M, Li X, Wang Q, Ji X, Chen R, Luo X, Ji S, Lu R (2024) Assessment of Vibrionaceae prevalence in seafood from Qidong market and analysis of Vibrio parahaemolyticus strains. PLoS ONE 19(8):e0309304. https://doi.org/10.1371/journal.pone.0309304
Article CAS PubMed PubMed Central Google Scholar
Yang C, Li Y, Jiang M, Wang L, Jiang Y, Hu L, Shi X, He L, Cai R, Wu S, Qiu Y, Lu L, Zuo L, Chen Q, Wu Y, Martinez-Urtaza J, Wan C, Yang R, Cui Y, Hu Q (2022) Outbreak dynamics of foodborne pathogen Vibrio parahaemolyticus over a seventeen year period implies hidden reservoirs. Nat Microbiol 7(8):1221–1229. https://doi.org/10.1038/s41564-022-01182-0
Article CAS PubMed Google Scholar
Broberg CA, Calder TJ, Orth K (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13(12–13):992–1001. https://doi.org/10.1016/j.micinf.2011.06.013
Article CAS PubMed PubMed Central Google Scholar
Li L, Meng H, Gu D, Li Y, Jia M (2019) Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res 222:43–51. https://doi.org/10.1016/j.micres.2019.03.003
Article CAS PubMed Google Scholar
Matsuda S, Okada R, Tandhavanant S, Hiyoshi H, Gotoh K, Iida T, Kodama T (2019) Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nat Microbiol 4(5):781–788. https://doi.org/10.1038/s41564-019-0368-y
Article CAS PubMed Google Scholar
Cai Q, Zhang Y (2018) Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic Vibrio parahaemolyticus. Microb Pathog 123:242–245. https://doi.org/10.1016/j.micpath.2018.07.021
Article CAS PubMed Google Scholar
Salomon D, Gonzalez H, Updegraff BL, Orth K (2013) Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS ONE 8(4):e61086. https://doi.org/10.1371/journal.pone.0061086
Article CAS PubMed PubMed Central Google Scholar
Yu Y, Yang H, Li J, Zhang P, Wu B, Zhu B, Zhang Y, Fang W (2012) Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol 194(10):827–835. https://doi.org/10.1007/s00203-012-0816-z
Article CAS PubMed Google Scholar
Huang Q, Zhang M, Zhang Y, Li X, Luo X, Ji S, Lu R (2024) IcmF2 of the type VI secretion system 2 plays a role in biofilm formation of Vibrio parahaemolyticus. Arch Microbiol 206(7):321. https://doi.org/10.1007/s00203-024-04060-x
Article CAS PubMed Google Scholar
Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17(3):109–118. https://doi.org/10.1016/j.tim.2008.12.004
Article CAS PubMed PubMed Central Google Scholar
Wang D, Flint SH, Palmer JS, Gagic D, Fletcher GC, On SLW (2022) Global expansion of Vibrio parahaemolyticus threatens the seafood industry: perspective on controlling its biofilm formation. LWT 158:113182. https://doi.org/10.1016/j.lwt.2022.113182
Liu M, Nie H, Luo X, Yang S, Chen H, Cai P (2022) A polysaccharide biosynthesis Locus in Vibrio parahaemolyticus important for biofilm formation has homologs widely distributed in aquatic bacteria mainly from gammaproteobacteria. mSystems 7(2):e0122621. https://doi.org/10.1128/msystems.01226-21
Article CAS PubMed Google Scholar
McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7(1–2):18–29. https://doi.org/10.1159/000077866
Article CAS PubMed Google Scholar
Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55(4):1160–1182. https://doi.org/10.1111/j.1365-2958.2004.04453.x
Article CAS PubMed Google Scholar
Jung YC, Lee MA, Lee KH (2019) Role of Flagellin-homologous proteins in biofilm formation by pathogenic Vibrio Species. MBio. https://doi.org/10.1128/mBio.01793-19
Article PubMed PubMed Central Google Scholar
Ball AS, Chaparian RR, van Kessel JC (2017) Quorum sensing gene regulation by LuxR/HapR master regulators in Vibrios. J Bacteriol. https://doi.org/10.1128/jb.00105-17
Article PubMed PubMed Central Google Scholar
Lu R, Osei-Adjei G, Huang X, Zhang Y (2018) Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios. Future Microbiol 13:383–391. https://doi.org/10.2217/fmb-2017-0165
Article CAS PubMed Google Scholar
Srivastava D, Waters CM (2012) A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP. J Bacteriol 194(17):4485–4493. https://doi.org/10.1128/jb.00379-12
Article CAS PubMed PubMed Central Google Scholar
Ferreira RB, Chodur DM, Antunes LC, Trimble MJ, McCarter LL (2012) Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network. J Bacteriol 194(5):914–924. https://doi.org/10.1128/jb.05807-11
Article CAS PubMed PubMed Central Google Scholar
Zhong X, Lu Z, Wang F, Yao N, Shi M, Yang M (2022) Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence. Appl Environ Microbiol 88(6):e0223921. https://doi.org/10.1128/aem.02239-21
Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15(5):271–284. https://doi.org/10.1038/nrmicro.2016.190
Article CAS PubMed Google Scholar
Trimble MJ, McCarter LL (2011) Bis-(3’-5’)-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus. Proc Natl Acad Sci USA 108(44):18079–18084. https://doi.org/10.1073/pnas.1113790108
Article PubMed PubMed Central Google Scholar
Li X, Sun J, Zhang M, Xue X, Wu Q, Yang W, Yin Z, Zhou D, Lu R, Zhang Y (2021) The effect of salinity on biofilm formation and c-di-GMP production in Vibrio parahaemolyticus. Curr Microbiol 79(1):25. https://doi.org/10.1007/s00284-021-02723-2
Article CAS PubMed Google Scholar
Zhang M, Luo X, Li X, Zhang T, Wu F, Li M, Lu R, Zhang Y (2023) L-arabinose affects the growth, biofilm formation, motility, c-di-GMP metabolism, and global gene expression of Vibrio parahaemolyticus. J Bacteriol 205(9):e0010023. https://doi.org/10.1128/jb.00100-23
Article CAS PubMed Google Scholar
Zhang M, Cai L, Luo X, Li X, Zhang T, Wu F, Zhang Y, Lu R (2023) Effect of sublethal dose of chloramphenicol on biofilm formation and virulence in Vibrio parahaemolyticus. Front Microbiol 14:1275441. https://doi.org/10.3389/fmicb.2023.1275441
Article PubMed PubMed Central Google Scholar
Li X, Zhang X, Zhang M, Luo X, Zhang T, Liu X, Lu R, Zhang Y (2024) Environmental magnesium ion affects global gene expression, motility, biofilm formation and virulence of Vibrio parahaemolyticus. Biofilm 7:100194. https://doi.org/10.1016/j.bioflm.2024.100194
Article PubMed PubMed Central Google Scholar
Zhang M, Xue X, Li X, Wu Q, Zhang T, Yang W, Hu L, Zhou D, Lu R, Zhang Y (2023) QsvR and OpaR coordinately repress biofilm formation by Vibrio parahaemolyticus. Front Microbiol 14:1079653. https://doi.org/10.3389/fmicb.2023.1079653
Comments (0)