Investigating c-di-GMP Signaling in : Biological Effects and Mechanisms of Regulation

Huang Q, Zhang Y, Zhang M, Li X, Wang Q, Ji X, Chen R, Luo X, Ji S, Lu R (2024) Assessment of Vibrionaceae prevalence in seafood from Qidong market and analysis of Vibrio parahaemolyticus strains. PLoS ONE 19(8):e0309304. https://doi.org/10.1371/journal.pone.0309304

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang C, Li Y, Jiang M, Wang L, Jiang Y, Hu L, Shi X, He L, Cai R, Wu S, Qiu Y, Lu L, Zuo L, Chen Q, Wu Y, Martinez-Urtaza J, Wan C, Yang R, Cui Y, Hu Q (2022) Outbreak dynamics of foodborne pathogen Vibrio parahaemolyticus over a seventeen year period implies hidden reservoirs. Nat Microbiol 7(8):1221–1229. https://doi.org/10.1038/s41564-022-01182-0

Article  CAS  PubMed  Google Scholar 

Broberg CA, Calder TJ, Orth K (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13(12–13):992–1001. https://doi.org/10.1016/j.micinf.2011.06.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Meng H, Gu D, Li Y, Jia M (2019) Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res 222:43–51. https://doi.org/10.1016/j.micres.2019.03.003

Article  CAS  PubMed  Google Scholar 

Matsuda S, Okada R, Tandhavanant S, Hiyoshi H, Gotoh K, Iida T, Kodama T (2019) Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nat Microbiol 4(5):781–788. https://doi.org/10.1038/s41564-019-0368-y

Article  CAS  PubMed  Google Scholar 

Cai Q, Zhang Y (2018) Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic Vibrio parahaemolyticus. Microb Pathog 123:242–245. https://doi.org/10.1016/j.micpath.2018.07.021

Article  CAS  PubMed  Google Scholar 

Salomon D, Gonzalez H, Updegraff BL, Orth K (2013) Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS ONE 8(4):e61086. https://doi.org/10.1371/journal.pone.0061086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Y, Yang H, Li J, Zhang P, Wu B, Zhu B, Zhang Y, Fang W (2012) Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Arch Microbiol 194(10):827–835. https://doi.org/10.1007/s00203-012-0816-z

Article  CAS  PubMed  Google Scholar 

Huang Q, Zhang M, Zhang Y, Li X, Luo X, Ji S, Lu R (2024) IcmF2 of the type VI secretion system 2 plays a role in biofilm formation of Vibrio parahaemolyticus. Arch Microbiol 206(7):321. https://doi.org/10.1007/s00203-024-04060-x

Article  CAS  PubMed  Google Scholar 

Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17(3):109–118. https://doi.org/10.1016/j.tim.2008.12.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang D, Flint SH, Palmer JS, Gagic D, Fletcher GC, On SLW (2022) Global expansion of Vibrio parahaemolyticus threatens the seafood industry: perspective on controlling its biofilm formation. LWT 158:113182. https://doi.org/10.1016/j.lwt.2022.113182

Article  CAS  Google Scholar 

Liu M, Nie H, Luo X, Yang S, Chen H, Cai P (2022) A polysaccharide biosynthesis Locus in Vibrio parahaemolyticus important for biofilm formation has homologs widely distributed in aquatic bacteria mainly from gammaproteobacteria. mSystems 7(2):e0122621. https://doi.org/10.1128/msystems.01226-21

Article  CAS  PubMed  Google Scholar 

McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7(1–2):18–29. https://doi.org/10.1159/000077866

Article  CAS  PubMed  Google Scholar 

Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55(4):1160–1182. https://doi.org/10.1111/j.1365-2958.2004.04453.x

Article  CAS  PubMed  Google Scholar 

Jung YC, Lee MA, Lee KH (2019) Role of Flagellin-homologous proteins in biofilm formation by pathogenic Vibrio Species. MBio. https://doi.org/10.1128/mBio.01793-19

Article  PubMed  PubMed Central  Google Scholar 

Ball AS, Chaparian RR, van Kessel JC (2017) Quorum sensing gene regulation by LuxR/HapR master regulators in Vibrios. J Bacteriol. https://doi.org/10.1128/jb.00105-17

Article  PubMed  PubMed Central  Google Scholar 

Lu R, Osei-Adjei G, Huang X, Zhang Y (2018) Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios. Future Microbiol 13:383–391. https://doi.org/10.2217/fmb-2017-0165

Article  CAS  PubMed  Google Scholar 

Srivastava D, Waters CM (2012) A tangled web: regulatory connections between quorum sensing and cyclic Di-GMP. J Bacteriol 194(17):4485–4493. https://doi.org/10.1128/jb.00379-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferreira RB, Chodur DM, Antunes LC, Trimble MJ, McCarter LL (2012) Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network. J Bacteriol 194(5):914–924. https://doi.org/10.1128/jb.05807-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong X, Lu Z, Wang F, Yao N, Shi M, Yang M (2022) Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence. Appl Environ Microbiol 88(6):e0223921. https://doi.org/10.1128/aem.02239-21

Article  PubMed  Google Scholar 

Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15(5):271–284. https://doi.org/10.1038/nrmicro.2016.190

Article  CAS  PubMed  Google Scholar 

Trimble MJ, McCarter LL (2011) Bis-(3’-5’)-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus. Proc Natl Acad Sci USA 108(44):18079–18084. https://doi.org/10.1073/pnas.1113790108

Article  PubMed  PubMed Central  Google Scholar 

Li X, Sun J, Zhang M, Xue X, Wu Q, Yang W, Yin Z, Zhou D, Lu R, Zhang Y (2021) The effect of salinity on biofilm formation and c-di-GMP production in Vibrio parahaemolyticus. Curr Microbiol 79(1):25. https://doi.org/10.1007/s00284-021-02723-2

Article  CAS  PubMed  Google Scholar 

Zhang M, Luo X, Li X, Zhang T, Wu F, Li M, Lu R, Zhang Y (2023) L-arabinose affects the growth, biofilm formation, motility, c-di-GMP metabolism, and global gene expression of Vibrio parahaemolyticus. J Bacteriol 205(9):e0010023. https://doi.org/10.1128/jb.00100-23

Article  CAS  PubMed  Google Scholar 

Zhang M, Cai L, Luo X, Li X, Zhang T, Wu F, Zhang Y, Lu R (2023) Effect of sublethal dose of chloramphenicol on biofilm formation and virulence in Vibrio parahaemolyticus. Front Microbiol 14:1275441. https://doi.org/10.3389/fmicb.2023.1275441

Article  PubMed  PubMed Central  Google Scholar 

Li X, Zhang X, Zhang M, Luo X, Zhang T, Liu X, Lu R, Zhang Y (2024) Environmental magnesium ion affects global gene expression, motility, biofilm formation and virulence of Vibrio parahaemolyticus. Biofilm 7:100194. https://doi.org/10.1016/j.bioflm.2024.100194

Article  PubMed  PubMed Central  Google Scholar 

Zhang M, Xue X, Li X, Wu Q, Zhang T, Yang W, Hu L, Zhou D, Lu R, Zhang Y (2023) QsvR and OpaR coordinately repress biofilm formation by Vibrio parahaemolyticus. Front Microbiol 14:1079653. https://doi.org/10.3389/fmicb.2023.1079653

Article  PubMed 

Comments (0)

No login
gif