The mechanism and prospect of exogenous promoters enhancement Anammox at low temperatures: a review

Adams M, Issaka E, Chen C (2024) Anammox-based technologies: a review of recent advances, mechanism, and bottlenecks. J Environ Sci 148:151–173. https://doi.org/10.1016/j.jes.2024.01.015

Article  CAS  Google Scholar 

Ahmad HA, Guo B, Zhuang X et al (2021) A twilight for the complete nitrogen removal via synergistic partial-denitrification, Anammox, and DNRA process. npj Clean Water 4(31):5. https://doi.org/10.1038/s41545-021-00122-5

Article  CAS  Google Scholar 

Ahmad M, Ameen S, Siddiqi TO et al (2016) Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor. Biosens Bioelectron 86:169–175. https://doi.org/10.1016/j.bios.2016.06.049

Article  CAS  PubMed  Google Scholar 

Al Otaibi NAS, Cassoli JS, Martins de Souza D et al (2019) Human leukemia cells (HL-60) proteomic and biological signatures underpinning cryo-damage are differentially modulated by novel cryo-additives. GigaScience 8(3):1–13. https://doi.org/10.1093/gigascience/giy155

Article  CAS  Google Scholar 

Bi Z, Qiao S, Zhou JT et al (2014) Fast start-up of Anammox process with appropriate ferrous iron concentration. Biores Technol 170:506–512. https://doi.org/10.1016/j.biortech.2014.07.106

Article  CAS  Google Scholar 

Casey JL, Hentze MW, Koeller DM et al (1988) Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240(4854):924–928. https://doi.org/10.1126/science.2452485

Article  CAS  PubMed  Google Scholar 

Chang G, Yang J, Li X et al (2023) Iron-modified carriers accelerate biofilm formation and resist Anammox bacteria loss in biofilm reactors for partial denitrification-Anammox. Biores Technol 394:130223. https://doi.org/10.1016/j.biortech.2023.130223

Article  CAS  Google Scholar 

Chattopadhyay MK (2002) The cryoprotective effects of glycine betaine on bacteria. Trends Microbiol 10(07):311. https://doi.org/10.1016/s0966-842x(02)02395-8

Article  CAS  Google Scholar 

Chen J, Li X, Liu H et al (2021) Impact of trehalose on nitrogen removal performance of Anammox in CRI systems under low temperature. Environ Sci Manag 046(010):76–80

CAS  Google Scholar 

Chen W, Zhang L, Liu Z et al (2024) Mechanism of nano-scale zero-valent iron modified biochar for enhancing low-nitrogen Anammox process resistance to low temperatures. J Environ Sci 152:442–452. https://doi.org/10.1016/j.jes.2024.05.049

Article  CAS  Google Scholar 

Cheng H-H, Narindri B, Chu H et al (2020) Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Biores Technol. https://doi.org/10.1016/j.biortech.2020.122861

Article  Google Scholar 

Cheng L, Liang H, Yang W et al (2023) The biochar/Fe-modified biocarrier driven simultaneous NDFO and Feammox to remove nitrogen from eutrophic water. Water Res 243:120280. https://doi.org/10.1016/j.watres.2023.120280

Article  CAS  PubMed  Google Scholar 

Chicano TM, Dietrich L, de Almeida NM et al (2021) Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nat Microbiol 6:1129–1139. https://doi.org/10.1038/s41564-021-00934-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chunmei B, Yanyan Z, Christopher BW et al (2021) Revealing the specific regulations of brassinolide on tomato fruit chilling injury by integrated multi-omics. Front Nutr 8:769715. https://doi.org/10.3389/fnut.2021.769715

Article  CAS  Google Scholar 

Clement J, Shrestha J, Ehrenfeld J et al (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol Biochem 37(12):2323–2328. https://doi.org/10.1016/j.soilbio.2005.03.027

Article  CAS  Google Scholar 

Ding J, Seow W, Zhou J et al (2020) Effects of Fe(II) on Anammox community activity and physiologic response. Front Environ Sci Eng 15(7):9. https://doi.org/10.1007/s11783-020-1299-9

Article  CAS  Google Scholar 

Dou Q, Zhang L, Lan S et al (2022) Metagenomics illuminated the mechanism of enhanced nitrogen removal and vivianite recovery induced by zero-valent iron in partial-denitrification/Anammox process. Biores Technol 356:127317. https://doi.org/10.1016/j.biortech.2022.127317

Article  CAS  Google Scholar 

Elreedy A, Fujii M, Koyama M et al (2018) Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. Water Res 151:349–361. https://doi.org/10.1016/j.watres.2018.12.043

Article  CAS  PubMed  Google Scholar 

Erdim E, Yücesoy Özkan Z, Kurt H et al (2018) Overcoming challenges in mainstream Anammox applications: Utilization of nanoscale zero valent iron (nZVI). Sci Total Environ 651(02):3023–3033. https://doi.org/10.1016/j.scitotenv.2018.09.140

Article  CAS  PubMed  Google Scholar 

Feng F, Liu Z, Tang X et al (2022) Dosing with pyrite significantly increases Anammox performance: Its role in the electron transfer enhancement and the functions of the Fe–N–S cycle. Water Res 229:119393. https://doi.org/10.1016/j.watres.2022.119393

Article  CAS  PubMed  Google Scholar 

Feng L, Li J, Ma H et al (2020) Effect of Fe(II) on simultaneous marine Anammox and Feammox treating nitrogen-laden saline wastewater under low temperature: enhanced performance and kinetics. Desalination 478:114287. https://doi.org/10.1016/j.desal.2019.114287

Article  CAS  Google Scholar 

Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52. https://doi.org/10.1016/j.abb.2014.01.029

Article  CAS  PubMed  Google Scholar 

Gao B, Zhang X, Zhu X et al (2024) A critical review of impact and synergistic mechanisms of iron and co-elements in Anammox. Chem Eng J 499:155949. https://doi.org/10.1016/j.cej.2024.155949

Article  CAS  Google Scholar 

Gao F, Zhang H, Yang F et al (2014) The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on Anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR). Process Biochem 49(11):1970–1978. https://doi.org/10.1016/j.procbio.2014.07.019

Article  CAS  Google Scholar 

Guo B, Chen Y, Lv L et al (2019) Transformation of the zero valent iron dosage effect on Anammox after long-term culture: from inhibition to promotion. Process Biochem 78:132–139. https://doi.org/10.1016/j.procbio.2019.01.014

Article  CAS  Google Scholar 

Hao X, Zeng W, Li J et al (2024) High-efficient nitrogen removal with low demand of Fe source and mechanism analysis driven by Fe(II)/Fe(III) cycle. Chem Eng J 481:148702. https://doi.org/10.1016/j.cej.2024.148702

Article  CAS  Google Scholar 

Heylen K, Ettwig K, Hu Z et al (2012) Rapid and simple cryopreservation of anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 78(08):3010–3013. https://doi.org/10.1128/aem.07501-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu X, Wang Y, Zhang J et al (2023) Study on magnetic field enhanced anaerobic ammoX and its operation characteristics. J Liaoning Chem Ind 52(9):1275–1282. https://doi.org/10.3969/j.issn.1004-0935.2023.09.010

Article  CAS  Google Scholar 

Huang D, Wang Y, Wu Q et al (2022) Anammox sludge preservation: preservative agents, temperature and substrate. J Environ Manage 311:114860. https://doi.org/10.1016/j.jenvman.2022.114860

Article  CAS  PubMed  Google Scholar 

Huo T, Zhao Y, Tang X et al (2020) Metabolic acclimation of Anammox consortia to decreased temperature. Environ Int 143:105915. https://doi.org/10.1016/j.envint.2020.105915

Article  CAS  PubMed  Google Scholar 

Ji L, Zhang X, Zhu X et al (2024) Novel insights into Feammox coupled with the NDFO: a critical review. Sci Total Environ 951:175721. https://doi.org/10.1016/j.scitotenv.2024.175721

Article  CAS  PubMed 

Comments (0)

No login
gif