Physiological and transcriptomic responses of the microalga during exposure to Hg(II) stress

Almeida AC, Gomes T, Langford K, Thomas KV, Tollefsen KE (2019) Oxidative stress potential of the herbicides Bifenox and Metribuzin in the microalgae Chlamydomonas reinhardtii. Aquat Toxicol 210:117–128. https://doi.org/10.1016/j.aquatox.2019.02.021

Article  CAS  PubMed  Google Scholar 

Ashraf N, Ahmad F, Lu Y (2022) Synergy between microalgae and Microbiome in polluted waters. Trends Microbiol 31(1):9–21. https://doi.org/10.1016/j.tim.2022.06.004

Article  CAS  PubMed  Google Scholar 

Beauvais-Fluck R, Slaveykova VI, Cosio C (2016) Transcriptomic and physiological responses of the green microalga Chlamydomonas reinhardtii during short-term exposure to subnanomolar Methylmercury concentrations. Environ Sci Technol 50(13):7126–7134. https://doi.org/10.1021/acs.est.6b00403

Article  CAS  PubMed  Google Scholar 

Bishop K, Shanley JB, Riscassi A, de Wit HA, Eklöf K, Meng B, Mitchell C, Osterwalder S, Schuster PF, Webster J, Zhu W (2020) Recent advances in Understanding and measurement of mercury in the environment: terrestrial hg cycling. Sci Total Environ 721:137647. https://doi.org/10.1016/j.scitotenv.2020.137647

Article  CAS  PubMed  Google Scholar 

Bussard A, Corre E, Hubas C, Duvernois-Berthet E, Le Corguille G, Jourdren L, Coulpier F, Claquin P, Lopez PJ (2017) Physiological adjustments and transcriptome reprogramming are involved in the acclimation to salinity gradients in diatoms. Environ Microbiol 19(3):909–925. https://doi.org/10.1111/1462-2920.13398

Article  CAS  PubMed  Google Scholar 

Cecchin M, Marcolungo L, Rossato M, Girolomoni L, Cosentino E, Cuine S, Li-Beisson Y, Delledonne M, Ballottari M (2019) Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Plant J 100(6):1289–1305. https://doi.org/10.1111/tpj.14508

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz de Carvalho MH, Sun HX, Bowler C, ChuaNH (2016) Noncoding and coding transcriptome responses of a marine diatom to phosphate fluctuations. New Phytol 210(2):497–510. https://doi.org/10.1111/nph.13787

Article  CAS  PubMed  Google Scholar 

Danouche M, El Ghachtouli N, El Baouchi A, El Arroussi H (2020) Heavy metals phycoremediation using tolerant green microalgae: enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. J Environ Chem Eng 8(5):104460. https://doi.org/10.1016/j.jece.2020.104460

Article  CAS  Google Scholar 

Du C, Zhang B, He Y, Hu C, Ng QX, Zhang H, Ong CN (2017) Biological effect of aqueous C60 aggregates on Scenedesmus obliquus revealed by transcriptomics and non-targeted metabolomics. J Hazard Mater 324:221–229. https://doi.org/10.1016/j.jhazmat.2016.10.052

Article  CAS  PubMed  Google Scholar 

Duquesnoy I, Goupil P, Nadaud I, Branlard G, Piquet-Pissaloux A, Ledoigt G (2009) Identification of Agrostis tenuis leaf proteins in response to As(V) and As(III) induced stress using a proteomics approach. Plant Sci 176(2):206–213. https://doi.org/10.1016/j.plantsci.2008.10.008

Article  CAS  Google Scholar 

Elleuch J, Hmani R, Drira M, Michaud P, Fendri I, Abdelkafi S (2021) Potential of three local marine microalgae from Tunisian Coasts for cadmium, lead and chromium removals. Sci Total Environ 799:149464. https://doi.org/10.1016/j.scitotenv.2021.149464

Article  CAS  PubMed  Google Scholar 

Gao Z, Zheng W, Li Y, Liu Y, Wu M, Li S, Li P, Liu G, Fu X, Wang S, Wang F, Cai Y, Feng X, Gu B, Zhong H, Yin Y (2022) Mercury transformation processes in nature: critical knowledge gaps and perspectives for moving forward. J Environ Sci 119:152–165. https://doi.org/10.1016/j.jes.2022.07.013

Article  Google Scholar 

Geng W, Xiao X, Zhang L, Ni W, Li N, Li Y (2021) Response and tolerance ability of Chlorella vulgaris to cadmium pollution stress. Environ Technol 1–11. https://doi.org/10.1080/09593330.2021.1950841

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

Article  CAS  PubMed  Google Scholar 

Gomez-Jacinto V, Garcia-Barrera T, Gomez-Ariza JL, Garbayo-Nores I, Vilchez-Lobato C (2015) Elucidation of the defence mechanism in microalgae Chlorella Sorokiniana under mercury exposure identification of Hg-phytochelatins. Chem Biol Interact 238:82–90. https://doi.org/10.1016/j.cbi.2015.06.013

Article  CAS  PubMed  Google Scholar 

Guo L, Li S, Cheng D, Lu X, Gao X, Zhang L, Lu J (2024) Integrated proteome and pangenome analysis revealed the variation of microalga isochrysis Galbana and associated bacterial community to 2,6-Di-tert-butyl-p-cresol (BHT) stress. World J Microb Biot 40(11). https://doi.org/10.1007/s11274-024-04171-z

Hassler CS, Behra R, Wilkinson KJ (2005) Impact of zinc acclimation on bioaccumulation and homeostasis in Chlorella kesslerii. Aquat Toxicol 74(2):139–149. https://doi.org/10.1016/j.aquatox.2005.02.008

Article  CAS  PubMed  Google Scholar 

Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum Ecotoxicol Environ Saf 208:111715. https://doi.org/10.1016/j.ecoenv.2020.111715

Ishikawa T, Tamaki S, Maruta T, Shigeoka S (2017) Biochemistry and physiology of reactive oxygen species in Euglena. Adv Exp Med Biol 979:47–64. https://doi.org/10.1007/978-3-319-54910-1_4

Article  CAS  PubMed  Google Scholar 

Jin M, Xiao X, Qin L, Geng W, Gao Y, Li L, Xue J (2020) Physiological and morphological responses and tolerance mechanisms of Isochrysis Galbana to Cr(VI) stress. Bioresour Technol 302:122860. https://doi.org/10.1016/j.biortech.2020.122860

Article  CAS  PubMed  Google Scholar 

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484. https://doi.org/10.1093/nar/gkm882

Article  CAS  Google Scholar 

Kang MS, Ryu E, Lee SW, Park J, Ha NY, Ra JS, Kim YJ, Kim J, Abdel-Rahman M, Park SH, Lee KY, Kim H, Kang S, Myung K (2019) Regulation of PCNA cycling on replicating DNA by RFC and RFC-like complexes. Nat Commun 10(1):2420. https://doi.org/10.1038/s41467-019-10376-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar D, Pandey LK, Gaur JP (2016) Metal sorption by algal biomass: from batch to continuous system. Algal Res 18:95–109. https://doi.org/10.1016/j.algal.2016.05.026

Article  Google Scholar 

Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886. https://doi.org/10.1016/j.biortech.2020.122886

Article  CAS  PubMed  Google Scholar 

Li C, Zheng C, Fu H, Zhai S, Hu F, Naveed S, Zhang C, Ge Y (2021) Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under cd and Pb stress. Chemosphere 274:129771. https://doi.org/10.1016/j.chemosphere.2021.129771

Article  CAS  PubMed  Google Scholar 

Li Y, Li D, Song B, Li Y (2022) The potential of mercury methylation and demethylation by 15 species of marine microalgae. Water Res 215:118266. https://doi.org/10.1016/j.watres.2022.118266

Article  CAS  PubMed  Google Scholar 

Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H (2024) Mercury transformations in algae, plants, and animals: the occurrence, mechanisms, and gaps. Sci Total Environ 911:168690. https://doi.org/10.1016/j.scitotenv.2023.168690

Article  CAS  PubMed  Google Scholar 

Liang X, Zhu N, Johs A, Chen H, Pelletier DA, Zhang L, Yin X, Gao Y, Zhao J, Gu B (2022) Mercury reduction, uptake, and species transformation by freshwater Alga chlorella vulgaris under sunlit and dark conditions. Environ Sci Technol 56(8):4961–4969. https://doi.org/10.1021/acs.est.1c06558

Article  CAS  PubMed  Google Scholar 

Liu S, Yu Z, Song X, Cao X (2017) Effects of modified clay on the physiological and photosynthetic activities of Amphidinium Carterae Hulburt. Harmful Algae 70:64–72. https://doi.org/10.1016/j.hal.2017.10.007

Article  CAS  PubMed  Google Scholar 

Liu D, Yang W, Lv Y, Li S, Qv M, Dai D, Zhu L (2023) Pollutant removal and toxic response mechanisms of freshwater microalgae chlorella Sorokiniana under exposure of tetrabromobisphenol A and cadmium. Chem Eng J 461:142065. https://doi.org/10.1016/j.cej.2023.142065

Article  CAS 

Comments (0)

No login
gif