Genome-wide CRISPR activation screen identifies ARL11 as a sensitivity determinant of PARP inhibitor therapy

Curtin NJ, Szabo C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov. 2020;19:711–36.

Article  CAS  PubMed  Google Scholar 

Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355:1152–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noordermeer SM, van Attikum H. PARP inhibitor resistance: a tug-of-war in BRCA-mutated cells. Trends Cell Biol. 2019;29:820–34.

Article  CAS  PubMed  Google Scholar 

Dias MP, Moser SC, Ganesan S, Jonkers J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 2021;18:773–91.

Article  PubMed  Google Scholar 

Fugger K, Hewitt G, West SC, Boulton SJ. Tackling PARP inhibitor resistance. Trends Cancer. 2021;7:1102–18.

Article  CAS  PubMed  Google Scholar 

Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014;159:647–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife. 2016;5:e19760.

Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017;12:828–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME, et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun. 2018;9:5416.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann M, Murina O, Reijns MAM, Agathanggelou A, Challis R, Tarnauskaite Z, et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature. 2018;559:285.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pettitt SJ, Krastev DB, Brandsma I, Drean A, Song F, Aleksandrov R, et al. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat Commun. 2018;9:1849.

Article  PubMed  PubMed Central  Google Scholar 

Barazas M, Annunziato S, Pettitt SJ, de Krijger I, Ghezraoui H, Roobol SJ, et al. The CST complex mediates end protection at double-strand breaks and promotes PARP inhibitor sensitivity in BRCA1-deficient cells. Cell Rep. 2018;23:2107–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang PP, De Souza C, Minn K, Chien J. Genome-scale CRISPR knockout screen identifies TIGAR as a modifier of PARP inhibitor sensitivity. Commun Biol. 2019;2:335.

Juhasz S, Smith R, Schauer T, Spekhardt D, Mamar H, Zentout S, et al. The chromatin remodeler ALC1 underlies resistance to PARP inhibitor treatment. Sci Adv 2020;6:eabb8626.

Verma P, Zhou Y, Cao Z, Deraska PV, Deb M, Arai E, et al. ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nat Cell Biol. 2021;23:160–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clements KE, Schleicher EM, Thakar T, Hale A, Dhoonmoon A, Tolman NJ, et al. Identification of regulators of poly-ADP-ribose polymerase inhibitor response through complementary CRISPR knockout and activation screens. Nat Commun. 2020;11:6118.

Fugger K, Bajrami I, Silva Dos Santos M, Young SJ, Kunzelmann S, Kelly G, et al. Targeting the nucleotide salvage factor DNPH1 sensitizes BRCA-deficient cells to PARP inhibitors. Science. 2021;372:156–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shinoda K, Zong D, Callen E, Wu W, Dumitrache LC, Belinky F, et al. The dystonia gene THAP1 controls DNA double-strand break repair choice. Mol Cell. 2021;81:2611–24.e10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Gao H, Gu Y, John A, Wei L, Huang M, et al. 3D CRISPR screen in prostate cancer cells reveals PARP inhibitor sensitization through TBL1XR1-SMC3 interaction. Front Oncol. 2022;12:999302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ipsen MB, Sorensen EMG, Thomsen EA, Weiss S, Haldrup J, Dalby A, et al. A genome-wide CRISPR-Cas9 knockout screen identifies novel PARP inhibitor resistance genes in prostate cancer. Oncogene. 2022;41:4271–81.

Article  CAS  PubMed  Google Scholar 

Tsujino T, Takai T, Hinohara K, Gui F, Tsutsumi T, Bai X, et al. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun. 2023;14:252.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillingham AK, Munro S. The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol. 2007;23:579–611.

Article  CAS  PubMed  Google Scholar 

Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12:362–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yendamuri S, Trapasso F, Ferracin M, Cesari R, Sevignani C, Shimizu M, et al. Tumor suppressor functions of ARLTS1 in lung cancers. Cancer Res. 2007;67:7738–45.

Article  CAS  PubMed  Google Scholar 

Sellick GS, Catovsky D, Houlston RS. Familial cancer associated with a polymorphism in ARLTS1. N Engl J Med. 2006;354:1204–5.

Article  CAS  PubMed  Google Scholar 

Yendamuri S, Trapasso F, Calin GA. ARLTS1—a novel tumor suppressor gene. Cancer Lett. 2008;264:11–20.

Article  CAS  PubMed  Google Scholar 

Frank B, Hemminki K, Meindl A, Wappenschmidt B, Klaes R, Schmutzler RK, et al. Association of the ARLTS1 Cys148Arg variant with familial breast cancer risk. Int J Cancer. 2006;118:2505–8.

Article  CAS  PubMed  Google Scholar 

Siltanen S, Wahlfors T, Schindler M, Saramaki OR, Mpindi JP, Latonen L, et al. Contribution of ARLTS1 Cys148Arg (T442C) variant with prostate cancer risk and ARLTS1 function in prostate cancer cells. PLoS ONE. 2011;6:e26595.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petrocca F, Iliopoulos D, Qin HR, Nicoloso MS, Yendamuri S, Wojcik SE, et al. Alterations of the tumor suppressor gene ARLTS1 in ovarian cancer. Cancer Res. 2006;66:10287–91.

Article  CAS  PubMed  Google Scholar 

Frank B, Hemminki K, Brenner H, Hoffmeister M, Chang-Claude J, Burwinkel B. ARLTS1 variants and risk of colorectal cancer. Cancer Lett. 2006;244:172–5.

Article  CAS  PubMed  Google Scholar 

Arya SB, Kumar G, Kaur H, Kaur A, Tuli A. ARL11 regulates lipopolysaccharide-stimulated macrophage activation by promoting mitogen-activated protein kinase (MAPK) signaling. J Biol Chem. 2018;293:9892–909.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie N, Shu Q, Wang Z, Huang X, Wang Y, Qin B, et al. ARL11 correlates with the immunosuppression and poor prognosis in breast cancer: a comprehensive bioinformatics analysis of ARL family members. PLoS ONE. 2022;17:e0274757.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li W, Xu

Comments (0)

No login
gif