Recent advances in the role of circRNA in cisplatin resistance in tumors

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

Article  CAS  PubMed  Google Scholar 

Hellmann MD, Li BT, Chaft JE, Kris MG. Chemotherapy remains an essential element of personalized care for persons with lung cancers. Ann Oncol. 2016;27:1829–35. https://doi.org/10.1093/annonc/mdw271.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Liu Z, Zhong Z, Ji Y, Guo H, Wang W, et al. A tumor suppressor protein encoded by circKEAP1 inhibits osteosarcoma cell stemness and metastasis by promoting vimentin proteasome degradation and activating anti-tumor immunity. J Exp Clin Cancer Res. 2024;43:52. https://doi.org/10.1186/s13046-024-02971-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang F, Wei D, Xie S, Ren L, Qiao S, Li L, et al. CircZCCHC2 decreases pirarubicin sensitivity and promotes triple-negative breast cancer development via the miR-1200/TPR axis. iScience. 2024;27:109057. https://doi.org/10.1016/j.isci.2024.109057.

Xu T, Xiong M, Hong Q, Pan B, Xu M, Wang Y, et al. Hsa_circ_0007990 promotes breast cancer growth via inhibiting YBX1 protein degradation to activate E2F1 transcription. Cell Death Dis. 2024;15:153. https://doi.org/10.1038/s41419-024-06527-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53:148–58. https://doi.org/10.2478/raon-2019-0018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu B, Liu J, Peng Z, Xiao Z, Li S, Wu J, et al. CircSOD2 polarizes macrophages towards the M1 phenotype to alleviate cisplatin resistance in gastric cancer cells by targeting the miR-1296/STAT1 axis. Gene. 2023;887:147733. https://doi.org/10.1016/j.gene.2023.147733.

Article  CAS  PubMed  Google Scholar 

Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12:381–8. https://doi.org/10.1080/15476286.2015.1020271.

Article  PubMed  PubMed Central  Google Scholar 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64. https://doi.org/10.1038/nsmb.2959.

Article  CAS  PubMed  Google Scholar 

Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer. 2019;18:116. https://doi.org/10.1186/s12943-019-1041-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29:481–91. https://doi.org/10.1038/s41418-022-00948-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bak RO, Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdiscip Rev RNA. 2014;5:317–33. https://doi.org/10.1002/wrna.1213.

Article  CAS  PubMed  Google Scholar 

Liu Z, Zhou Y, Liang G, Ling Y, Tan W, Tan L, et al. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis. 2019;10:55 https://doi.org/10.1038/s41419-018-1287-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiao L, Li CG, LiuD. CircRNA_0048211 protects postmenopausal osteoporosis through targeting miRNA-93-5p to regulate BMP2. Eur Rev Med Pharmacol Sci.2020;24:3459–66. 10.26355/eurrev_202004_20804

Zhao Z, Yang W, Kong R, Zhang Y, Li L, Song Z, et al. circEIF3I facilitates the recruitment of SMAD3 to early endosomes to promote TGF-beta signalling pathway-mediated activation of MMPs in pancreatic cancer. Mol Cancer. 2023;22:152.https://doi.org/10.1186/s12943-023-01847-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Jiang J, Zhang J, Shen H, Wang M, Guo Z, et al. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol Cancer. 2021;20:101. https://doi.org/10.1186/s12943-021-01390-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. https://doi.org/10.1016/j.ejphar.2014.07.025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenberg B, Vancamp L, Krigas T. Inhibition of cell division in Escherichia Coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–9. https://doi.org/10.1038/205698a0.

Article  CAS  PubMed  Google Scholar 

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7:573–84. https://doi.org/10.1038/nrc2167.

Article  CAS  PubMed  Google Scholar 

Ranasinghe R, Mathai ML, Zulli A. Cisplatin for cancer therapy and overcoming chemoresistance. Heliyon. 2022;8:e10608. https://doi.org/10.1016/j.heliyon.2022.e10608.

Article  CAS  PubMed  PubMed Central  Google Scholar 

MATSUMOTO K. Inorganic and Organometallic Chemistry of Cisplatin-Derived Diplatinum(III) Complexes [M]. Cisplatin. 1999;455–75. https://doi.org/10.1002/9783906390420.ch18.

Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 2016;106:27–36. https://doi.org/10.1016/j.phrs.2016.01.001.

Article  CAS  PubMed  Google Scholar 

Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83. https://doi.org/10.1038/onc.2011.384.

Article  CAS  PubMed  Google Scholar 

Kelland LR. Preclinical perspectives on platinum resistance. Drugs. 2000;59:1–8. https://doi.org/10.2165/00003495-200059004-00001.

Article  CAS  PubMed  Google Scholar 

More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM. Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci. 2010;30:9500–9. https://doi.org/10.1523/JNEUROSCI.1544-10.2010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamasaki M, Makino T, Masuzawa T, Kurokawa Y, Miyata H, Takiguchi S, et al. Role of multidrug resistance protein 2 (MRP2) in chemoresistance and clinical outcome in oesophageal squamous cell carcinoma. Br J Cancer. 2011;104:707–13. https://doi.org/10.1038/sj.bjc.6606071.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gavande NS, VanderVere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Pawelczak KS, et al. DNA repair targeted therapy: the past or future of cancer treatment?. Pharmacol Ther. 2016;160:65–83. https://doi.org/10.1016/j.pharmthera.2016.02.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saldivar JS, Wu X, Follen M, Gershenson D. Nucleotide excision repair pathway review I: implications in ovarian cancer and platinum sensitivity. Gynecol Oncol. 2007;107:S56–71. https://doi.org/10.1016/j.ygyno.2007.07.043.

Article  CAS  PubMed  Google Scholar 

Baretti M, Le DT. DNA mismatch repair in cancer. Pharmacol Ther. 2018;189:45–62. https://doi.org/10.1016/j.pharmthera.2018.04.004.

Article 

Comments (0)

No login
gif