Barbacid, M. (1987). Ras genes. Annual Review of Biochemistry, 56, 779–827. https://doi.org/10.1146/annurev.bi.56.070187.004023FromNLMMedline
Article CAS PubMed Google Scholar
Huang, L., Guo, Z., Wang, F., & Fu, L. (2021). KRAS mutation: From undruggable to druggable in cancer. Signal Transduction and Targeted Therapy, 6(1), 386. https://doi.org/10.1038/s41392-021-00780-4FromNLMMedline
Article PubMed PubMed Central Google Scholar
Karnoub, A. E., & Weinberg, R. A. (2008). Ras oncogenes: Split personalities. Nature Reviews Molecular Cell Biology, 9(7), 517–531. https://doi.org/10.1038/nrm2438FromNLMMedline
Article CAS PubMed PubMed Central Google Scholar
Santos, E., & Nebreda, A. R. (1989). Structural and functional properties of ras proteins. The FASEB Journal, 3(10), 2151–2163. https://doi.org/10.1096/fasebj.3.10.2666231FromNLMMedline
Article CAS PubMed Google Scholar
Vetter, I. R., & Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294(5545), 1299–1304. https://doi.org/10.1126/science.1062023FromNLMMedline
Article CAS PubMed Google Scholar
Takai, Y., Sasaki, T., & Matozaki, T. (2001). Small GTP-binding proteins. Physiological Reviews, 81(1), 153–208. https://doi.org/10.1152/physrev.2001.81.1.153FromNLMMedline
Article CAS PubMed Google Scholar
Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: Critical elements in the control of small G proteins. Cell, 129(5), 865–877. https://doi.org/10.1016/j.cell.2007.05.018FromNLMMedline
Article CAS PubMed Google Scholar
Iversen, L., Tu, H. L., Lin, W. C., Christensen, S. M., Abel, S. M., Iwig, J., & Wu, H. J. (2014). Gureasko, J.; Rhodes, C.; Petit, R. S.; et al. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science, 345 (6192), 50–54. https://doi.org/10.1126/science.1250373 From NLM Medline.
Voldborg, B. R., Damstrup, L., Spang-Thomsen, M., & Poulsen, H. S. (1997). Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Annals of Oncology, 8(12), 1197–1206. https://doi.org/10.1023/a:1008209720526FromNLMMedline
Article CAS PubMed Google Scholar
Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A. J., Herron, C. E., Ramsey, M., Wolfer, D. P., Cestari, V., Rossi-Arnaud, C., et al. (1997). A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 390(6657), 281–286. https://doi.org/10.1038/36849FromNLMMedline
Article CAS PubMed Google Scholar
Ruess, D. A., Heynen, G. J., Ciecielski, K. J., Ai, J., Berninger, A., Kabacaoglu, D., Gorgulu, K., Dantes, Z., Wormann, S. M., Diakopoulos, K. N., et al. (2018). Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nature Medicine, 24(7), 954–960. https://doi.org/10.1038/s41591-018-0024-8FromNLMMedline
Article CAS PubMed Google Scholar
Bunda, S., Burrell, K., Heir, P., Zeng, L., Alamsahebpour, A., Kano, Y., Raught, B., Zhang, Z. Y., Zadeh, G., & Ohh, M. (2015). Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nature Communications, 6, 8859. https://doi.org/10.1038/ncomms9859FromNLMMedline
Article CAS PubMed Google Scholar
Dance, M., Montagner, A., Salles, J. P., Yart, A., & Raynal, P. (2008). The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular Signalling, 20(3), 453–459. https://doi.org/10.1016/j.cellsig.2007.10.002FromNLMMedline
Article CAS PubMed Google Scholar
Hanafusa, H., Torii, S., Yasunaga, T., & Nishida, E. (2002). Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nature Cell Biology, 4(11), 850–858. https://doi.org/10.1038/ncb867FromNLMMedline
Article CAS PubMed Google Scholar
Gualdrini, F., Esnault, C., Horswell, S., Stewart, A., Matthews, N., & Treisman, R. (2016). SRF co-factors control the balance between cell proliferation and contractility. Molecular Cell, 64(6), 1048–1061. https://doi.org/10.1016/j.molcel.2016.10.016FromNLMMedline
Article CAS PubMed PubMed Central Google Scholar
Liu, R. Y., Zhang, Y., Smolen, P., Cleary, L. J., & Byrne, J. H. (2020). Role of p90 ribosomal S6 kinase in long-term synaptic facilitation and enhanced neuronal excitability. Science and Reports, 10(1), 608. https://doi.org/10.1038/s41598-020-57484-yFromNLMMedline
Liu, G. Y., & Sabatini, D. M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews Molecular Cell Biology, 21(4), 183–203. https://doi.org/10.1038/s41580-019-0199-yFromNLMMedline
Article CAS PubMed PubMed Central Google Scholar
Tomasini, P., Walia, P., Labbe, C., Jao, K., & Leighl, N. B. (2016). Targeting the KRAS pathway in non-small cell lung cancer. The Oncologist, 21(12), 1450–1460. https://doi.org/10.1634/theoncologist.2015-0084FromNLMMedline
Article CAS PubMed PubMed Central Google Scholar
Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 7(4), 295–308. https://doi.org/10.1038/nrc2109FromNLMMedline
Article CAS PubMed Google Scholar
Vigil, D., Cherfils, J., Rossman, K. L., & Der, C. J. (2010). Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nature Reviews Cancer, 10(12), 842–857. https://doi.org/10.1038/nrc2960FromNLMMedline
Article CAS PubMed PubMed Central Google Scholar
Zhou, B., Der, C. J., & Cox, A. D. (2016). The role of wild type RAS isoforms in cancer. Seminars in Cell & Developmental Biology, 58, 60–69. https://doi.org/10.1016/j.semcdb.2016.07.012
Singh, A., Sowjanya, A. P., & Ramakrishna, G. (2005). The wild-type Ras: Road ahead. The FASEB Journal, 19(2), 161–169. https://doi.org/10.1096/fj.04-2584hyp
Article CAS PubMed Google Scholar
Prior, I. A., Lewis, P. D., & Mattos, C. (2012). A comprehensive survey of Ras mutations in cancer. Cancer Research, 72(10), 2457–2467.
CAS PubMed PubMed Central Google Scholar
Kimura, K., Nagasaka, T., Hoshizima, N., Sasamoto, H., Notohara, K., Takeda, M., Kominami, K., Iishii, T., Tanaka, N., & Matsubara, N. (2007). No duplicate KRAS mutation is identified on the same allele in gastric or colorectal cancer cells with multiple KRAS mutations. Journal of International Medical Research, 35(4), 450–457.
Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., Ince, W. L., Jänne, P. A., Januario, T., & Johnson, D. H. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non–small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909.
Chevallier, M., Borgeaud, M., Addeo, A., & Friedlaender, A. (2021). Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J Clin Oncol, 12(4), 217–237. https://doi.org/10.5306/wjco.v12.i4.217FromNLM
Article PubMed PubMed Central Google Scholar
Pylayeva-Gupta, Y., Grabocka, E., & Bar-Sagi, D. (2011). RAS oncogenes: Weaving a tumorigenic web. Nature Reviews Cancer, 11(11), 761–774.
CAS PubMed PubMed Central Google Scholar
Dias Carvalho, P., Guimaraes, C. F., Cardoso, A. P., Mendonca, S., Costa, A. M., Oliveira, M. J., & Velho, S. (2018). KRAS oncogenic signaling extends beyond cancer cells to orchestrate the microenvironment. Cancer research, 78(1), 7–14.
Comments (0)