Advancements in gene therapies targeting mutant KRAS in cancers

Barbacid, M. (1987). Ras genes. Annual Review of Biochemistry, 56, 779–827. https://doi.org/10.1146/annurev.bi.56.070187.004023FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Huang, L., Guo, Z., Wang, F., & Fu, L. (2021). KRAS mutation: From undruggable to druggable in cancer. Signal Transduction and Targeted Therapy, 6(1), 386. https://doi.org/10.1038/s41392-021-00780-4FromNLMMedline

Article  PubMed  PubMed Central  Google Scholar 

Karnoub, A. E., & Weinberg, R. A. (2008). Ras oncogenes: Split personalities. Nature Reviews Molecular Cell Biology, 9(7), 517–531. https://doi.org/10.1038/nrm2438FromNLMMedline

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos, E., & Nebreda, A. R. (1989). Structural and functional properties of ras proteins. The FASEB Journal, 3(10), 2151–2163. https://doi.org/10.1096/fasebj.3.10.2666231FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Vetter, I. R., & Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294(5545), 1299–1304. https://doi.org/10.1126/science.1062023FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Takai, Y., Sasaki, T., & Matozaki, T. (2001). Small GTP-binding proteins. Physiological Reviews, 81(1), 153–208. https://doi.org/10.1152/physrev.2001.81.1.153FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: Critical elements in the control of small G proteins. Cell, 129(5), 865–877. https://doi.org/10.1016/j.cell.2007.05.018FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Iversen, L., Tu, H. L., Lin, W. C., Christensen, S. M., Abel, S. M., Iwig, J., & Wu, H. J. (2014). Gureasko, J.; Rhodes, C.; Petit, R. S.; et al. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science, 345 (6192), 50–54. https://doi.org/10.1126/science.1250373 From NLM Medline.

Voldborg, B. R., Damstrup, L., Spang-Thomsen, M., & Poulsen, H. S. (1997). Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Annals of Oncology, 8(12), 1197–1206. https://doi.org/10.1023/a:1008209720526FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Brambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A. J., Herron, C. E., Ramsey, M., Wolfer, D. P., Cestari, V., Rossi-Arnaud, C., et al. (1997). A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 390(6657), 281–286. https://doi.org/10.1038/36849FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Ruess, D. A., Heynen, G. J., Ciecielski, K. J., Ai, J., Berninger, A., Kabacaoglu, D., Gorgulu, K., Dantes, Z., Wormann, S. M., Diakopoulos, K. N., et al. (2018). Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nature Medicine, 24(7), 954–960. https://doi.org/10.1038/s41591-018-0024-8FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Bunda, S., Burrell, K., Heir, P., Zeng, L., Alamsahebpour, A., Kano, Y., Raught, B., Zhang, Z. Y., Zadeh, G., & Ohh, M. (2015). Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nature Communications, 6, 8859. https://doi.org/10.1038/ncomms9859FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Dance, M., Montagner, A., Salles, J. P., Yart, A., & Raynal, P. (2008). The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular Signalling, 20(3), 453–459. https://doi.org/10.1016/j.cellsig.2007.10.002FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Hanafusa, H., Torii, S., Yasunaga, T., & Nishida, E. (2002). Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nature Cell Biology, 4(11), 850–858. https://doi.org/10.1038/ncb867FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Gualdrini, F., Esnault, C., Horswell, S., Stewart, A., Matthews, N., & Treisman, R. (2016). SRF co-factors control the balance between cell proliferation and contractility. Molecular Cell, 64(6), 1048–1061. https://doi.org/10.1016/j.molcel.2016.10.016FromNLMMedline

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, R. Y., Zhang, Y., Smolen, P., Cleary, L. J., & Byrne, J. H. (2020). Role of p90 ribosomal S6 kinase in long-term synaptic facilitation and enhanced neuronal excitability. Science and Reports, 10(1), 608. https://doi.org/10.1038/s41598-020-57484-yFromNLMMedline

Article  CAS  Google Scholar 

Liu, G. Y., & Sabatini, D. M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews Molecular Cell Biology, 21(4), 183–203. https://doi.org/10.1038/s41580-019-0199-yFromNLMMedline

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomasini, P., Walia, P., Labbe, C., Jao, K., & Leighl, N. B. (2016). Targeting the KRAS pathway in non-small cell lung cancer. The Oncologist, 21(12), 1450–1460. https://doi.org/10.1634/theoncologist.2015-0084FromNLMMedline

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 7(4), 295–308. https://doi.org/10.1038/nrc2109FromNLMMedline

Article  CAS  PubMed  Google Scholar 

Vigil, D., Cherfils, J., Rossman, K. L., & Der, C. J. (2010). Ras superfamily GEFs and GAPs: Validated and tractable targets for cancer therapy? Nature Reviews Cancer, 10(12), 842–857. https://doi.org/10.1038/nrc2960FromNLMMedline

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, B., Der, C. J., & Cox, A. D. (2016). The role of wild type RAS isoforms in cancer. Seminars in Cell & Developmental Biology, 58, 60–69. https://doi.org/10.1016/j.semcdb.2016.07.012

Article  CAS  Google Scholar 

Singh, A., Sowjanya, A. P., & Ramakrishna, G. (2005). The wild-type Ras: Road ahead. The FASEB Journal, 19(2), 161–169. https://doi.org/10.1096/fj.04-2584hyp

Article  CAS  PubMed  Google Scholar 

Prior, I. A., Lewis, P. D., & Mattos, C. (2012). A comprehensive survey of Ras mutations in cancer. Cancer Research, 72(10), 2457–2467.

CAS  PubMed  PubMed Central  Google Scholar 

Kimura, K., Nagasaka, T., Hoshizima, N., Sasamoto, H., Notohara, K., Takeda, M., Kominami, K., Iishii, T., Tanaka, N., & Matsubara, N. (2007). No duplicate KRAS mutation is identified on the same allele in gastric or colorectal cancer cells with multiple KRAS mutations. Journal of International Medical Research, 35(4), 450–457.

CAS  PubMed  Google Scholar 

Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., Ince, W. L., Jänne, P. A., Januario, T., & Johnson, D. H. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non–small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909.

CAS  PubMed  Google Scholar 

Chevallier, M., Borgeaud, M., Addeo, A., & Friedlaender, A. (2021). Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J Clin Oncol, 12(4), 217–237. https://doi.org/10.5306/wjco.v12.i4.217FromNLM

Article  PubMed  PubMed Central  Google Scholar 

Pylayeva-Gupta, Y., Grabocka, E., & Bar-Sagi, D. (2011). RAS oncogenes: Weaving a tumorigenic web. Nature Reviews Cancer, 11(11), 761–774.

CAS  PubMed  PubMed Central  Google Scholar 

Dias Carvalho, P., Guimaraes, C. F., Cardoso, A. P., Mendonca, S., Costa, A. M., Oliveira, M. J., & Velho, S. (2018). KRAS oncogenic signaling extends beyond cancer cells to orchestrate the microenvironment. Cancer research, 78(1), 7–14.

CAS  PubMed 

Comments (0)

No login
gif