Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572. https://doi.org/10.1038/nrc865
Article CAS PubMed Google Scholar
Parte, S. C., Batra, S. K., & Kakar, S. S. (2018). Characterization of stem cell and cancer stem cell populations in ovary and ovarian tumors. Journal of Ovarian Research, 11(1), 69. https://doi.org/10.1186/s13048-018-0439-3
Article CAS PubMed PubMed Central Google Scholar
Chu, X., Tian, W., Ning, J., Xiao, G., Zhou, Y., Wang, Z., Zhai, Z., Tanzhu, G., Yang, J., & Zhou, R. (2024). Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduction and Targeted Therapy, 9(1), 170. https://doi.org/10.1038/s41392-024-01851-y
Article CAS PubMed PubMed Central Google Scholar
Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23(10), 1124–1134. https://doi.org/10.1038/nm.4409
Article CAS PubMed Google Scholar
Bahmad, H. F., Chamaa, F., Assi, S., Chalhoub, R. M., Abou-Antoun, T., & Abou-Kheir, W. (2019). Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier [Review]. Frontiers in Molecular Neuroscience, 12(131). https://doi.org/10.3389/fnmol.2019.00131
Phi, L. T. H., Sari, I. N., Yang, Y.-G., Lee, S.-H., Jun, N., Kim, K. S., Lee, Y. K., & Kwon, H. Y. (2018). Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells International, 2018(1), 5416923. https://doi.org/10.1155/2018/5416923
Article CAS PubMed PubMed Central Google Scholar
Panda, S. K., Robinson, N., & Desiderio, V. (2024). Decoding secret role of mesenchymal stem cells in regulating cancer stem cells and drug resistance. Biochimica et Biophysica Acta - Reviews on Cancer, 1879(6), 189205. https://doi.org/10.1016/j.bbcan.2024.189205
Article CAS PubMed Google Scholar
Peitzsch, C., Tyutyunnykova, A., Pantel, K., & Dubrovska, A. (2017). Cancer stem cells: The root of tumor recurrence and metastases. Seminars in Cancer Biology, 44, 10–24. https://doi.org/10.1016/j.semcancer.2017.02.011
Article CAS PubMed Google Scholar
Hasan, S., Jacob, R., Manne, U., & Paluri, R. (2019). Advances in pancreatic cancer biomarkers. Oncology Reviews, 13(1), 410. https://doi.org/10.4081/oncol.2019.410
Article CAS PubMed PubMed Central Google Scholar
Schindler, A. J., Watanabe, A., & Howell, S. B. (2017). LGR5 and LGR6 in stem cell biology and ovarian cancer. Oncotarget, 9(1), 1346–1355. https://doi.org/10.18632/oncotarget.20178
Article PubMed PubMed Central Google Scholar
Abdelrahman, A. E., El-azony, A., Elsebai, E., & Ibrahim, H. M. (2022). Prognostic Impact of LGR5, Prox1, and Notch1 Biomarkers in Stage II to III Colon Cancer. Applied Immunohistochemistry & Molecular Morphology, 30(2). https://journals.lww.com/appliedimmunohist/Fulltext/2022/02000/Prognostic_Impact_of_LGR5,_Prox1,_and_Notch1.8.aspx
Morsy, H., Gaballah, A., Samir, M., Nakundi, V., Shamseya, M., Mahrous, H., Ghazal, A., Hashish, M., & Arafat, W. (2021). LGR5, HES1 and ATOH1 in Young Rectal Cancer Patients in Egyptian. Asian Pacific Journal of Cancer Prevention, 22(9), 2819–2830. https://doi.org/10.31557/apjcp.2021.22.9.2819
Article CAS PubMed PubMed Central Google Scholar
Gao, F., Xu, J. C., You, X. R., Gao, X., Wei, J. L., Li, S. X., Zhu, C. L., & Yang, C. (2019). The biological functions of LGR5 in promoting non-small cell lung cancer progression. Translational Cancer Research, 8(1), 203–211. https://doi.org/10.21037/tcr.2019.01.24
Article CAS PubMed PubMed Central Google Scholar
Zhang, M., Chen, T., Lu, X., Lan, X., Chen, Z., & Lu, S. (2024). G protein-coupled receptors (GPCRs): Advances in structures, mechanisms, and drug discovery. Signal Transduction and Targeted Therapy, 9(1), 88. https://doi.org/10.1038/s41392-024-01803-6
Article CAS PubMed PubMed Central Google Scholar
Sun, B., Ye, X., Li, Y., & Zhang, W. (2015). Lgr5 is a potential prognostic marker in patients with cervical carcinoma. International Journal of Clinical and Experimental Pathology, 8(2), 1783–1789.
PubMed PubMed Central Google Scholar
Kumar, K. K., Burgess, A. W., & Gulbis, J. M. (2014). Structure and function of LGR5: An enigmatic G-protein coupled receptor marking stem cells. Protein Science, 23(5), 551–565. https://doi.org/10.1002/pro.2446
Article CAS PubMed PubMed Central Google Scholar
Fevr, T., Robine, S., Louvard, D., & Huelsken, J. (2007). Wnt/β-Catenin Is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells. Molecular and Cellular Biology, 27(21), 7551. https://doi.org/10.1128/MCB.01034-07
Article CAS PubMed PubMed Central Google Scholar
Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36(11), 1461–1473. https://doi.org/10.1038/onc.2016.304
Article CAS PubMed Google Scholar
Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P. J., & Clevers, H. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007. https://doi.org/10.1038/nature06196
Article CAS PubMed Google Scholar
Sigal, M., Reinés, Md. M., Müllerke, S., Fischer, C., Kapalczynska, M., Berger, H., Bakker, E. R. M., Mollenkopf, H.-J., Rothenberg, M. E., Wiedenmann, B., Sauer, S., & Meyer, T. F. (2019). R-spondin-3 induces secretory, antimicrobial Lgr5+ cells in the stomach. Nature Cell Biology, 21(7), 812–823. https://doi.org/10.1038/s41556-019-0339-9
Article CAS PubMed Google Scholar
Barker, N., Rookmaaker, M. B., Kujala, P., Ng, A., Leushacke, M., Snippert, H., van de Wetering, M., Tan, S., Van Es, J. H., Huch, M., Poulsom, R., Verhaar, M. C., Peters, P. J., & Clevers, H. (2012). Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. Cell Reports, 2(3), 540–552. https://doi.org/10.1016/j.celrep.2012.08.018
Article CAS PubMed Google Scholar
de Visser, K. E., Ciampricotti, M., Michalak, E. M., Tan, D. W., Speksnijder, E. N., Hau, C. S., Clevers, H., Barker, N., & Jonkers, J. (2012). Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. The Journal of Pathology, 228(3), 300–309. https://doi.org/10.1002/path.4096
Article CAS PubMed Google Scholar
Gil-Sanchis, C., Cervelló, I., Mas, A., Faus, A., Pellicer, A., & Simón, C. (2013). Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) as a putative human endometrial stem cell marker. Molecular Human Reproduction, 19(7), 407–414. https://doi.org/10.1093/molehr/gat014
Article CAS PubMed Google Scholar
Ng, A., Tan, S., Singh, G., Rizk, P., Swathi, Y., Tan, T. Z., Huang, R.Y.-J., Leushacke, M., & Barker, N. (2014). Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nature Cell Biology, 16(8), 745–757. https://doi.org/10.1038/ncb3000
Article CAS PubMed Google Scholar
Noh, M., Smith, J. L., Huh, Y. H., & Sherley, J. L. (2011). A resource for discovering specific and universal biomarkers for distributed stem cells. PLoS ONE, 6(7), e22077. https://doi.org/10.1371/journal.pone.0022077
Article CAS PubMed PubMed Central Google Scholar
Capel, B. (2014). Ovarian epithelium regeneration by Lgr5+ cells. Nature Cell Biology, 16(8), 743–744. https://doi.org/10.1038/ncb3020
Article CAS PubMed Google Scholar
Mara, J. N., Zhou, L. T., Larmore, M., Johnson, B., Ayiku, R., Amargant, F., Pritchard, M. T., & Duncan, F. E. (2020). Ovulation and ovarian wound healing are impaired with advanced reproductive age. Aging (Albany NY), 12(10), 9686–9713. https://doi.org/10.18632/aging.103237
Article CAS PubMed Google Scholar
Espey, L. L. (1994). Current Status of the Hypothesis that Mammalian Ovulation is Comparable to an Inflammatory Reaction. Biology of Reproduction, 50(2), 233–238.
Comments (0)