The diversity of natural killer cell functional and phenotypic states in cancer

Zhang, W., Zhao, Z., & Li, F. (2022). Natural killer cell dysfunction in cancer and new strategies to utilize NK cell potential for cancer immunotherapy. Molecular Immunology, 144, 58–70.

Article  CAS  PubMed  Google Scholar 

Yao, X., & Matosevic, S. (2021). Chemokine networks modulating natural killer cell trafficking to solid tumors. Cytokine & Growth Factor Reviews, 59, 36–45.

Article  CAS  Google Scholar 

Harmon, C., et al. (2019). Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK Cells in colorectal liver metastasis. Cancer Immunology Research, 7, 335–346.

Article  CAS  PubMed  Google Scholar 

Vitale, M., Cantoni, C., Pietra, G., Mingari, M. C. & Moretta, L. Effect of tumor cells and tumor microenvironment on NK-cell function. European Journal of Immunology 44, 1582–1592.

Merino, A., et al. (2019). Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. The Journal of Clinical Investigation, 129, 3770–3785.

Article  PubMed  PubMed Central  Google Scholar 

Borde, S., & Matosevic, S. (2023). Metabolic adaptation of NK cell activity and behavior in tumors: Challenges and therapeutic opportunities. Trends in Pharmacological Sciences, 44, 832–848.

Article  CAS  PubMed  Google Scholar 

Chiossone, L., et al. (2009). Maturation of mouse NK cells is a 4-stage developmental program. Blood, 113, 5488–5496.

Article  CAS  PubMed  Google Scholar 

Tumino, N., et al. (2023). The tumor microenvironment drives NK cell metabolic dysfunction leading to impaired antitumor activity. International Journal of Cancer, 152, 1698–1706.

Article  CAS  PubMed  Google Scholar 

Lupo, K. B. et al. TIGIT contributes to the regulation of 4–1BB and does not define NK cell dysfunction in glioblastoma. iScience 26, (2023).

Ran, G. he et al. Natural killer cell homing and trafficking in tissues and tumors: From biology to application. Sig Transduct Target Ther 7, 1–21 (2022)

Wang, X., & Zhao, X.-Y. (2021). Transcription factors associated with IL-15 cytokine signaling during NK cell development. Frontiers in Immunology, 12, 610789.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mrózek, E., Anderson, P., & Caligiuri, M. A. (1996). Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood, 87, 2632–2640.

Article  PubMed  Google Scholar 

Seggewiss, R., & Einsele, H. (2010). Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: An update. Blood, 115, 3861–3868.

Article  CAS  PubMed  Google Scholar 

Yu, H., et al. (1998). Flt3 ligand promotes the generation of a distinct CD34(+) human natural killer cell progenitor that responds to interleukin-15. Blood, 92, 3647–3657.

Article  CAS  PubMed  Google Scholar 

Wang, L., Chen, Z., Liu, G., & Pan, Y. (2023). Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes & Diseases, 10, 990–1004.

Article  CAS  Google Scholar 

Wang, J., & Matosevic, S. (2020). Functional and metabolic targeting of natural killer cells to solid tumors. Cellular Oncology, 43, 577–600.

Article  PubMed  Google Scholar 

Pfefferle, A., et al. (2019). Intra-lineage plasticity and functional reprogramming maintain natural killer cell repertoire diversity. Cell Reports, 29, 2284-2294.e4.

Article  CAS  PubMed  Google Scholar 

Batlle, E., & Massagué, J. (2019). Transforming grown factor-β signaling in immunity and cancer. Immunity, 50, 924–940.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vivier, E., et al. (2024). Natural killer cell therapies. Nature, 626, 727–736.

Article  CAS  PubMed  Google Scholar 

Angelo, L. S., et al. (2015). Practical NK cell phenotyping and variability in healthy adults. Immunologic Research, 62, 341–356.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper, M. A., Fehniger, T. A., & Caligiuri, M. A. (2001). The biology of human natural killer-cell subsets. Trends in Immunology, 22, 633–640.

Article  CAS  PubMed  Google Scholar 

Vivier, E., Tomasello, E., Baratin, M., Walzer, T., & Ugolini, S. (2008). Functions of natural killer cells. Nature Immunology, 9, 503–510.

Article  CAS  PubMed  Google Scholar 

Di Vito, C., Mikulak, J., & Mavilio, D. (2019). On the way to become a natural killer cell. Frontiers in Immunology, 10, 1812.

Article  PubMed  PubMed Central  Google Scholar 

Yu, J., Freud, A. G., & Caligiuri, M. A. (2013). Location and cellular stages of natural killer cell development. Trends in Immunology, 34, 573–582.

Article  CAS  PubMed  Google Scholar 

Romagnani, C., et al. (2007). CD56brightCD16− killer ig-like receptor− NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. The Journal of Immunology, 178, 4947–4955.

Article  CAS  PubMed  Google Scholar 

Poli, A., et al. (2009). CD56 bright natural killer (NK) cells: An important NK cell subset. Immunology, 126, 458–465.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferlazzo, G., et al. (2004). The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-Like receptors and become cytolytic. The Journal of Immunology, 172, 1455–1462.

Article  CAS  PubMed  Google Scholar 

Lugli, E., Marcenaro, E. & Mavilio, D. NK cell subset redistribution during the course of viral infections. Front. Immunol. 5, (2014).

Schlums, H., et al. (2015). Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity, 42, 443–456.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gang, M., Wong, P., Berrien-Elliott, M. M., & Fehniger, T. A. (2020). Memory-like natural killer cells for cancer immunotherapy. Seminars in Hematology, 57, 185–193.

Article  PubMed  PubMed Central  Google Scholar 

Terrén, I., et al. (2022). Cytokine-induced memory-like NK cells: From the basics to clinical applications. Frontiers in Immunology, 13, 884648.

Article  PubMed  PubMed Central  Google Scholar 

Rebuffet, L. et al. High-dimensional single-cell analysis of human natural killer cell heterogeneity. Nat Immunol 1–15 (2024) https://doi.org/10.1038/s41590-024-01883-0.

Smith, S. L., et al. (2020). Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Advances, 4, 1388–1406.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lanier, L. L. (1998). NK cell receptors. Annual Review of Immunology, 16, 359–393.

Article  CAS  PubMed  Google Scholar 

Moretta, A., et al. (2001). Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annual Review of Immunology, 19, 197–223.

Article  CAS  PubMed  Google Scholar 

Björkström, N. K., et al. (2010). Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood, 116, 3853–3864.

Comments (0)

No login
gif