Microbiota and cancer: unraveling the significant influence of microbial communities on cancer treatment

Lee, J. Y., Bays, D. J., Savage, H. P., & Baumler, A. J. (2024). The human gut microbiome in health and disease: Time for a new chapter? Infection and Immunity, 92(11), e0030224.

Article  PubMed  Google Scholar 

Miller, A. L., Bessho, S., Grando, K., & Tukel, C. (2021). Microbiome or infections: Amyloid-containing biofilms as a trigger for complex human diseases. Frontiers in Immunology, 12, 638867.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverman, G. J., Azzouz, D. F., Gisch, N., & Amarnani, A. (2024). The gut microbiome in systemic lupus erythematosus: Lessons from rheumatic fever. Nature Reviews Rheumatology, 20(3), 143–157.

Article  PubMed  Google Scholar 

Seo, D. O., & Holtzman, D. M. (2020). Gut microbiota: From the forgotten organ to a potential key player in the pathology of Alzheimer’s disease. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 75(7), 1232–1241.

Article  CAS  PubMed  Google Scholar 

Sun, J., Chen, S., Zang, D., Sun, H., Sun, Y., & Chen, J. (2024). Butyrate as a promising therapeutic target in cancer: From pathogenesis to clinic (Review). International Journal of Oncology, 64(4), 44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arthur, J. C., Perez-Chanona, E., Muhlbauer, M., Tomkovich, S., Uronis, J. M., Fan, T. J., et al. (2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 338(6103), 120–123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomkovich, S., Dejea, C. M., Winglee, K., Drewes, J. L., Chung, L., Housseau, F., et al. (2019). Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. The Journal of Clinical Investigation, 129(4), 1699–1712.

Article  PubMed  PubMed Central  Google Scholar 

Zhu, W., Miyata, N., Winter, M. G., Arenales, A., Hughes, E. R., Spiga, L., et al. (2019). Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. Journal of Experimental Medicine, 216(10), 2378–2393.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sears, C. L. (2009). Enterotoxigenic Bacteroides fragilis: A rogue among symbiotes. Clinical Microbiology Reviews, 22(2), 349–69. Table of Contents.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, S., Rhee, K. J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H. R., et al. (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Medicine, 15(9), 1016–1022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubinstein, M. R., Wang, X., Liu, W., Hao, Y., Cai, G., & Han, Y. W. (2013). Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host & Microbe, 14(2), 195–206.

Article  CAS  Google Scholar 

Iida, N., Dzutsev, A., Stewart, C. A., Smith, L., Bouladoux, N., Weingarten, R. A., et al. (2013). Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science, 342(6161), 967–970.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillere, R., Hannani, D., et al. (2013). The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 342(6161), 971–976.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geller, L. T., Barzily-Rokni, M., Danino, T., Jonas, O. H., Shental, N., Nejman, D., et al. (2017). Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 357(6356), 1156–1160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., et al. (2017). Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 170(3), 548–63. e16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Routy, B., Le Chatelier, E., Derosa, L., Duong, C. P. M., Alou, M. T., Daillere, R., et al. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 359(6371), 91–97.

Article  CAS  PubMed  Google Scholar 

Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., et al. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 350(6264), 1084–1089.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., et al. (2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 359(6371), 97–103.

Article  CAS  PubMed  Google Scholar 

Humphries, A., & Daud, A. (2018). The gut microbiota and immune checkpoint inhibitors. Human Vaccines & Immunotherapeutics, 14(9), 2178–2182.

Article  Google Scholar 

Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., et al. (2018). Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 360(6391), eaan5931.

Article  PubMed  PubMed Central  Google Scholar 

Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M. L., et al. (2018). The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science, 359(6371), 104–108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petitprez, F., Meylan, M., de Reynies, A., Sautes-Fridman, C., & Fridman, W. H. (2020). The tumor microenvironment in the response to immune checkpoint blockade therapies. Front Immunol, 11, 784.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matson, V., & Gajewski, T. F. (2022). Dietary modulation of the gut microbiome as an immunoregulatory intervention. Cancer Cell, 40(3), 246–248.

Article  CAS  PubMed  Google Scholar 

Spencer, C. N., McQuade, J. L., Gopalakrishnan, V., McCulloch, J. A., Vetizou, M., Cogdill, A. P., et al. (2021). Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 374(6575), 1632–1640.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhosale, P. B., Ha, S. E., Vetrivel, P., Kim, H. H., Kim, S. M., & Kim, G. S. (2020). Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Translational Cancer Research, 9(12), 7619–7631.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell, R. A., Li, J., Malone, L., & Levy, D. A. (2021). Correlative analysis of vitamin D and Omega-3 fatty acid intake in men on active surveillance for prostate cancer. Urology, 155, 110–116.

Article  PubMed  Google Scholar 

Song, M., Ou, F. S., Zemla, T. J., Hull, M. A., Shi, Q., Limburg, P. J., et al. (2019). Marine omega-3 fatty acid intake and survival of stage III colon cancer according to tumor molecular markers in NCCTG Phase III trial N0147 (Alliance). International Journal of Cancer, 145(2), 380–389.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young, M. R. I., & Xiong, Y. (2018). Influence of vitamin D on cancer risk and treatment: Why the variability? Trends in Cancer Research, 13, 43–53.

PubMed  PubMed Central  Google Scholar 

Zoi, V., Galani, V., Lianos, G. D., Voulgaris, S., Kyritsis, A. P., & Alexiou, G. A. (2021). The role of curcumin in cancer treatment. Biomedicines, 9(9), 1086.

Article  CAS 

Comments (0)

No login
gif