Coleman, H.R., Chan, C.C., Ferris, F.L., and Chew, E.Y., Age-related macular degeneration, Lancet, 2008, vol. 372, no. 9652, pp. 1835–1845. https://doi.org/10.1016/S0140-6736(08)61759-6
Article CAS PubMed PubMed Central Google Scholar
Fursova, A.Zh., Derbeneva, A.S., Vasilyeva, M.A., Nikulich, I.F., Tarasov, M.S., Gamza, Yu.A., Chubar, N.V., Gusarevich, O.G., Dmitrieva, E.I., Telegina, D.V., and Kozhevnikova, O.S., Current data on the age-related macular degeneration pathophysiology: Focus on growth factors and neurotrophins, Adv. Gerontol., 2023, vol. 13, no. 3, pp. 105–115. https://doi.org/10.1134/S2079057024600162
Kaarniranta, K., Tokarz, P., Koskela, A., Paterno, J., and Blasiak, J., Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration, Cell Biol. Toxicol., 2017, vol. 33, no. 2, pp. 113–128. https://doi.org/10.1007/s10565-016-9371-8
Article CAS PubMed Google Scholar
Blasiak, J., Pawlowska, E., Szczepanska, J., and Kaarniranta, K., Interplay between autophagy and the ubiquitin–proteasome system and its role in the pathogenesis of age-related macular degeneration, Int. J. Mol. Sci., 2019, vol. 20, no. 1, p. 210. https://doi.org/10.3390/ijms20010210
Article CAS PubMed PubMed Central Google Scholar
Yang, X., Pan, X., Zhao, X., Luo, J., Xu, M., Bai, D., Hu, Y., Liu, X., Yu, Q., and Gao, D., Autophagy and age-related eye diseases, BioMed Res. Int., 2019, vol. 2019, no. 1, p. 5763658. https://doi.org/10.1155/2019/5763658
Article CAS PubMed PubMed Central Google Scholar
Mizushima, N. and Komatsu, M., Autophagy: Renovation of cells and tissues, Cell, 2011, vol. 147, no. 4, pp. 728–741. https://doi.org/10.1016/j.cell.2011.10.026
Article CAS PubMed Google Scholar
Lyu, Y., Zauhar, R., Dana, N., Strang, C.E., Hu, J., Wang, K., Liu, S., Pan, N., Gamlin, P., Kimble, J.A., Messinger, J.D., Curcio, C.A., Stambolian, D., and Li, M., Implication of specific retinal cell-type involvement and gene expression changes in AMD progression using integrative analysis of single-cell and bulk RNA-seq profiling, Sci. Rep., 2021, vol. 11, p. 15612. https://doi.org/10.1038/s41598-021-95122-3
Article CAS PubMed PubMed Central Google Scholar
Telegina, D.V., Kozhevnikova, O.S., and Kolosova, N.G., Molecular mechanisms of cell death in retina during development of age-related macular degeneration, Adv. Gerontol., 2017, vol. 7, no. 1, pp. 17–24. https://doi.org/10.1134/S2079057017010155
Liton, P.B., Boesze-Battaglia, K., Boulton, M.E., Boya, P., Ferguson, T.A., Ganley, I.G., Kauppinnen, A., Laurie, G.W., Mizushima, N., Morishita, H., Russo, R., Sadda, J., Shyam, R., Sinha, D., Thompson, D.A., and Zacks, D.N., Autophagy in the eye: From physiology to pathophysology, Autophagy Rep., 2023, vol. 2, no. 1, p. 2178996. https://doi.org/10.1080/27694127.2023.2178996
Article PubMed PubMed Central Google Scholar
Fanjul-Moles, M.L. and Lopez-Riquelme, G.O., Relationship between oxidative stress, circadian rhythms, and AMD, Oxid. Med. Cell. Longev., 2016, vol. 2016, p. 7420637. https://doi.org/10.1155/2016/7420637
Article CAS PubMed Google Scholar
Yi, C., Pan, X., Yan, H., Guo, M., and Pierpaoli, W., Effects of melatonin in age-related macular degeneration, Ann. N. Y. Acad. Sci., 2005, vol. 1057, pp. 384–392. https://doi.org/10.1196/annals.1356.029
Article CAS PubMed Google Scholar
Stone, R.A., Tobias, J.W., Wei, W., Schug, J., Wang, X., Zhang, L., Iuvone, P.M., and Nickla, D.L., Diurnal retinal and choroidal gene expression patterns support a role for circadian biology in myopia pathogenesis, Sci. Rep., 2024, vol. 14, p. 533. https://doi.org/10.1038/s41598-023-50684-2
Article CAS PubMed PubMed Central Google Scholar
Qi, X., Mitter, S.K., Yan, Y., Busik, J.V., Grant, M.B., and Boulton, M.E., Diurnal rhythmicity of autophagy is impaired in the diabetic retina, Cells, 2020, vol. 9, no. 4, p. 905. https://doi.org/10.3390/cells9040905
Article CAS PubMed PubMed Central Google Scholar
Kolosova, N.G., Kozhevnikova, O.S., Muraleva, N.A., Rudnitskaya, E.A., Rumyantseva, Y.V., Stefanova, N.A., Telegina, D.V., Tyumentsev, M.A., and Fursova, A.Zh., SkQ1 as a tool for controlling accelerated senescence program: Experiments with OXYS rats, Biochemistry (Mosc.), 2022, vol. 87, no. 12, pp. 1552–1562. https://doi.org/10.1134/S0006297922120124
Article CAS PubMed Google Scholar
Kozhevnikova, O.S., Telegina, D.V., Devyatkin, V.A., and Kolosova, N.G., Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats, Biogerontology, 2018, vol. 19, no. 3, pp. 223–235. https://doi.org/10.1007/s10522-018-9751-y
Article CAS PubMed Google Scholar
Telegina, D.V., Kozhevnikova, O.S., Fursova, A.Zh., and Kolosova, N.G., Autophagy as a target for the retinoprotective effects of the mitochondria-targeted antioxidant SkQ1, Biochemistry (Mosc.), 2020, vol. 85, no. 12, pp. 1640–1649. https://doi.org/10.1134/S0006297920120159
Article CAS PubMed Google Scholar
Kozhevnikova, O.S., Telegina, D.V., Tyumentsev, M.A., and Kolosova, N.G., Disruptions of autophagy in the rat retina with age during the development of age-related-macular-degeneration-like retinopathy, Int. J. Mol. Sci., 2019, vol. 20, no. 19, p. 4804. https://doi.org/10.3390/ijms20194804
Article CAS PubMed PubMed Central Google Scholar
Rudnitskaya, E.A., Maksimova, K.Y., Muraleva, N.A., Logvinov, S.V., Yanshole, L.V., Kolosova, N.G., and Stefanova, N.A., Beneficial effects of melatonin in a rat model of sporadic Alzheimer’s disease, Biogerontology, 2015, vol. 16, no. 3, pp. 303–316. https://doi.org/10.1007/s10522-014-9547-7
Article CAS PubMed Google Scholar
Telegina, D.V., Antonenko, A.K., and Kolosova, N.G., Differences in changes in the glutamate/GABA system activity in the rat retina during aging and the development of retinopathy at nighttime and daytime, Neurochem. J., 2023, vol. 17, pp. 380–386. https://doi.org/10.1134/S1819712423030170
Telegina, D.V., Antonenko, A.K., Fursova, A.Z., and Kolosova, N.G., The glutamate/GABA system in the retina of male rats: Effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ, Biogerontology, 2022, vol. 23, no. 5, pp. 571–585. https://doi.org/10.1007/s10522-022-09983-w
Article CAS PubMed Google Scholar
Yao, J., Jia, L., Shelby, S.J., Ganios, A.M., Feathers, K., Thompson, D.A., and Zacks, D.N., Circadian and noncircadian modulation of autophagy in photoreceptors and retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci., 2014, vol. 55, no. 5, pp. 3237–3246. https://doi.org/10.1167/iovs.13-13336
Article CAS PubMed PubMed Central Google Scholar
Wang, J., Du, E., Li, F., and Zheng, Y., Changes of Beclin-1 and ULK1 in retina of mice model in oxygen-induced retinopathy, Adv. Ophthalmol. Pract. Res., 2022, vol. 2, no. 3, p. 100065. https://doi.org/10.1016/j.aopr.2022.100065
Article PubMed PubMed Central Google Scholar
Fan, X., Huang, T., Tong, Y., Fan, Z., Yang, Z., Yang, D., Mao, X., and Yang, M., P62 works as a hub modulation in the ageing process, Ageing Res. Rev., 2022, vol. 73, p. 101538. https://doi.org/10.1016/j.arr.2021.101538
Article CAS PubMed Google Scholar
Viiri, J., Amadio, M., Marchesi, N., Hyttinen, J.M., Kivinen, N., Sironen, R., Rilla, K., Akhtar, S., Provenzani, A., D’Agostino, V.G., Govoni, S., Pascale, A., Agostini, H., Petrovski, G., Salminen, A., and Kaarniranta, K., Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/P62 during proteasomal inhibition in human retinal pigment epithelial cells, PLoS One, 2013, vol. 8, no. 7, p. e69563. https://doi.org/10.1371/journal.pone.0069563
Article CAS PubMed PubMed Central Google Scholar
Kroemer, G., Autophagy: A druggable process that is deregulated in aging and human disease, J. Clin. Invest., 2015, vol. 125, no. 1, pp. 1–4. https://doi.org/10.1172/JCI78652
Article PubMed PubMed Central Google Scholar
Rodríguez-Muela, N., Koga, H., García-Ledo, L., de la Villa, P., de la Rosa, E.J., Cuervo, A.M., and Boya, P., Balance between autophagic pathways preserves retinal homeostasis, Aging Cell, 2013, vol. 12, no. 3, pp. 478–488.https://doi.org/10.1111/acel.12072
Comments (0)