Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 update: a Report from the American Heart Association. Circulation. 2019;139(10):e56–528. https://doi.org/10.1161/CIR.0000000000000659.
Gramiak R, Shah PM. Detection of intracardiac blood flow by pulsed echo-ranging ultrasound. Radiology. 1971;100(2):415–8. https://doi.org/10.1148/100.2.415.
Article PubMed CAS Google Scholar
Beppu S, Nimura Y, Sakakibara H, Nagata S, Park YD, Izumi S. Smoke-like echo in the left atrial cavity in mitral valve disease: its features and significance. J Am Coll Cardiol. 1985;6(4):744–9. https://doi.org/10.1016/s0735-1097(85)80476-9.
Article PubMed CAS Google Scholar
Mohanty S, Torlapati PG, La Fazia VM, Kurt M, Gianni C, MacDonald B, Mayedo A, Allison J, Bassiouny M, Gallinghouse GJ, Burkhardt JD, Horton R, Di Biase L, Al-Ahmad A, Natale A. Best anticoagulation strategy with and without appendage occlusion for stroke-prophylaxis in postablation atrial fibrillation patients with cardiac amyloidosis. J Cardiovasc Electrophysiol. 2024;35(7):1422–8. https://doi.org/10.1111/jce.16308.
Fatkin D, Loupas T, Jacobs N, Feneley MP. Quantification of blood echogenicity: evaluation of a semiquantitative method of grading spontaneous echo contrast. Ultrasound Med Biol. 1995;21(9):1191–8. https://doi.org/10.1016/0301-5629(95)02006-3.
Article PubMed CAS Google Scholar
Ito T, Suwa M, Kobashi A, Yagi H, Nakamura T, Miyazaki S, Kitaura Y. Integrated backscatter assessment of left atrial spontaneous echo contrast in chronic nonvalvular atrial fibrillation: relation with clinical and echocardiographic parameters. J Am Soc Echocardiogr. 2000;13(7):666–73. https://doi.org/10.1067/mje.2000.104739.
Article PubMed CAS Google Scholar
Douketis JD, Spyropoulos AC, Duncan J, Carrier M, Le Gal G, Tafur AJ, Vanassche T, Verhamme P, Shivakumar S, Gross PL, Lee AYY, Yeo E, Solymoss S, Kassis J, Le Templier G, Kowalski S, Blostein M, Shah V, MacKay E, Wu C, Clark NP, Bates SM, Spencer FA, Arnaoutoglou E, Coppens M, Arnold DM, Caprini JA, Li N, Moffat KA, Syed S, Schulman S. Perioperative Management of patients with Atrial Fibrillation receiving a direct oral anticoagulant. JAMA Intern Med. 2019;179(11):1469–78. https://doi.org/10.1001/jamainternmed.2019.2431.
Article PubMed PubMed Central Google Scholar
Schulman S, Carrier M, Lee AY, Shivakumar S, Blostein M, Spencer FA, Solymoss S, Barty R, Wang G, Heddle N, Douketis JD, Periop Dabigatran Study Group. Perioperative Management of Dabigatran: a prospective cohort study. Circulation. 2015;132(3):167–73. https://doi.org/10.1161/CIRCULATIONAHA.115.015688.
Article PubMed CAS Google Scholar
Zeng D, Zhang X, Chang S, Zhong Y, Cai Y, Huang T, Wu J. A nomogram for predicting left atrial thrombus or spontaneous echo contrast in non-valvular atrial fibrillation patients using hemodynamic parameters from transthoracic echocardiography. Front Cardiovasc Med. 2024;11:1337853. https://doi.org/10.3389/fcvm.2024.1337853.
Article PubMed PubMed Central Google Scholar
Sim GA, Robertson JM, Goodwin TH. The crystal and molecular structure of benzoic acid. Acta Cryst. 1955;8:157–64.
Cong D, Fong AK, Lee R, Pang KS. Absorption of benzoic acid in segmental regions of the vascularly perfused rat small intestine preparation. Drug Metab Dispos. 2001;29(12):1539–47.
Bridges JW, French MR, Smith RL, Williams RT. The fate of benzoic acid in various species. Biochem J. 1970;118(1):47–51. https://doi.org/10.1042/bj1180047.
Article PubMed PubMed Central CAS Google Scholar
Shu Y, Yu B, He J, et al. Excess of dietary benzoic acid supplementation leads to growth retardation, hematological abnormality and organ injury of piglets. Livest Sci. 2016;190:94–103. https://doi.org/10.1016/j.livsci.2016.06.010.
Chen J, Yu CD. Effects of benzoic acid on growth performance, organ indexes and gastrointestinal content pH of weaned piglets. Chin J Anim Nutr. 2015;27:238–46.
Gao Z, Zheng YB. Effects of Benzoic acid on intestinal microflora and metabolites of piglets. Chin J Anim Nutr. 2014;26:1044–54.
Diao H, Gao Z, Yu B, Zheng P, He J, Yu J, Huang Z, Chen D, Mao X. Effects of benzoic acid (VevoVitall®) on the performance and jejunal digestive physiology in young pigs. J Anim Sci Biotechnol. 2016;7:32. https://doi.org/10.1186/s40104-016-0091-y.
Article PubMed PubMed Central CAS Google Scholar
Gorter KA, Stehouwer MC, Van Putte BP, Vlot EA, Urbanus RT. Acidosis induced by carbon dioxide insufflation decreases heparin potency: a risk factor for thrombus formation. Perfusion. 2017;32(3):214–9. https://doi.org/10.1177/0267659116677307.
Z G. Regulatory effects of Benzoic Acid on Digestive Physiology and Nutritional Metabolism of Young pigs. Sichuan Agricultural University; 2013.
Wu L, Li Z, Xu L, Fan Y, Mao D, Sun H, Zhuang W. Nrf2 ameliorates Atrial Fibrosis during Antithrombotic Therapy for Atrial Fibrillation by modulating CYP2C9 activity. J Cardiovasc Pharmacol. 2024;84(4):440–50. https://doi.org/10.1097/FJC.0000000000001618.
Article PubMed PubMed Central CAS Google Scholar
Badreldin H, El-Karef A, Ibrahim T, Elshal M. Targeting Nrf2/HO-1 and NF-κB/TNF-α signaling pathways with empagliflozin protects against atrial fibrillation-induced acute kidney injury in rats. Toxicology. 2024;506:153879. https://doi.org/10.1016/j.tox.2024.153879.
Article PubMed CAS Google Scholar
Zhao ZX, Fu J, Ma SR, Peng R, Yu JB, Cong L, Pan LB, Zhang ZG, Tian H, Che CT, Wang Y, Jiang JD. Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. Theranostics. 2018;8(21):5945–59. https://doi.org/10.7150/thno.28068.
Article PubMed PubMed Central CAS Google Scholar
Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir Ş. Novel benzoic acid derivatives: synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Arch Pharm (Weinheim). 2021;354(3):e2000282. https://doi.org/10.1002/ardp.202000282.
Article PubMed CAS Google Scholar
Oliveira C, Bagetta D, Cagide F, Teixeira J, Amorim R, Silva T, Garrido J, Remião F, Uriarte E, Oliveira PJ, Alcaro S, Ortuso F, Borges F. Benzoic acid-derived nitrones: a new class of potential acetylcholinesterase inhibitors and neuroprotective agents. Eur J Med Chem. 2019;174:116–29. https://doi.org/10.1016/j.ejmech.2019.04.026.
Article PubMed CAS Google Scholar
Mitrokhin V, Hadzi-Petrushev N, Kazanski V, Schileyko S, Kamkina O, Rodina A, Zolotareva A, Zolotarev V, Kamkin A, Mladenov M. The role of KACh channels in Atrial Fibrillation. Cells. 2024;13(12):1014. https://doi.org/10.3390/cells13121014.
Article PubMed PubMed Central CAS Google Scholar
Bayer JD, Boukens BJ, Krul SPJ, Roney CH, Driessen AHG, Berger WR, van den Berg NWE, Verkerk AO, Vigmond EJ, Coronel R, de Groot JR. Acetylcholine delays atrial activation to facilitate Atrial Fibrillation. Front Physiol. 2019;10:1105. https://doi.org/10.3389/fphys.2019.01105.
Article PubMed PubMed Central Google Scholar
Del Olmo A, Calzada J, Nuñez M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: uses, exposure, and controversy. Crit Rev Food Sci Nutr. 2017;57(14):3084–103. https://doi.org/10.1080/10408398.2015.1087964.
Article PubMed CAS Google Scholar
Kukuljan M, Vergara L, Stojilkovic SS. Modulation of the kinetics of inositol 1,4,5-trisphosphate-induced [Ca2+]i oscillations by calcium entry in pituitary gonadotrophs. Biophys J. 1997;72(2 Pt 1):698–707. https://doi.org/10.1016/s0006-3495(97)78706-x.
Article PubMed PubMed Central CAS Google Scholar
Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007;115(5):654–7. https://doi.org/10.1161/CIRCULATIONAHA.105.594929.
Badier-Commander C, Couvelard A, Henin D, Verbeuren T, Michel JB, Jacob MP. Smooth muscle cell modulation and cytokine overproduction in varicose veins. An in situ study. J Pathol. 2001;193(3):398–407. https://doi.org/10.1002/path.819.
Comments (0)