Anjum, A., M.D. Yazid, M. Fauzi Daud, J. Idris, A.M. Ng, A. Selvi Naicker, O.H. Ismail, R.K. Athi Kumar, and Y. Lokanathan. 2020. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. International Journal of Molecular Sciences 21 (20). https://doi.org/10.3390/ijms21207533.
Sterner, R.C., and R.M. Sterner. 2023. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. 13.
DeVivo, M.J., B.K. Go, and A.B. Jackson. 2002. Overview of the National Spinal Cord Injury Statistical Center Database. The Journal of Spinal Cord Medicine 25 (4): 335–338.
Kumru, H., A. Flores, M. Rodríguez-Cañón, I. Soriano, L. García, and J. Vidal-Samsó. 2020. Non-invasive brain and spinal cord stimulation for motor and functional recovery after a spinal cord injury. Revista de Neurologia 70 (12): 461–477.
Article CAS PubMed Google Scholar
Shao, A., S. Tu, J. Lu, and J. Zhang. 2019. Crosstalk between stem cell and spinal cord injury: Pathophysiology and treatment strategies. Stem Cell Research & Therapy 10 (1): 238.
Mukai, T., R. Gallant, S. Ishida, T. Yoshitaka, M. Kittaka, K. Nishida, D.A. Fox, Y. Morita, and Y. Ueki. 2014. SH3BP2 gain-of-function mutation exacerbates inflammation and bone loss in a murine collagen-induced arthritis model. PLoS One 9 (8): e105518.
Article PubMed PubMed Central Google Scholar
Deckert, M., S. Tartare-Deckert, J. Hernandez, R. Rottapel, and A. Altman. 1998. Adaptor function for the Syk kinases-interacting protein 3BP2 in IL-2 gene activation. Immunity 9 (5): 595–605.
Article CAS PubMed Google Scholar
Foucault, I., S. Le Bras, C. Charvet, C. Moon, A. Altman, and M. Deckert. 2005. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor. Blood 105 (3): 1106–1113.
Article CAS PubMed Google Scholar
Shukla, U., T. Hatani, K. Nakashima, K. Ogi, and K. Sada. 2009. Tyrosine phosphorylation of 3BP2 regulates B cell receptor-mediated activation of NFAT. The Journal of Biological Chemistry 284 (49): 33719–33728.
Article CAS PubMed PubMed Central Google Scholar
Levaot, N., P.D. Simoncic, I.D. Dimitriou, A. Scotter, J. La Rose, A.H. Ng, T.L. Willett, C.J. Wang, S. Janmohamed, M. Grynpas, E. Reichenberger, and R. Rottapel. 2011. 3BP2-deficient mice are osteoporotic with impaired osteoblast and osteoclast functions. The Journal of Clinical Investigation 121 (8): 3244–3257.
Article CAS PubMed PubMed Central Google Scholar
Mukherjee, P.M., C.J. Wang, I.P. Chen, T. Jafarov, B.R. Olsen, Y. Ueki, and E.J. Reichenberger. 2010. Cherubism gene Sh3bp2 is important for optimal bone formation, osteoblast differentiation, and function. American Journal of Orthodontics and Dentofacial Orthopedics 138 (2): 140.e141–140.e111 discussion 140-141.
Nayak, D., T.L. Roth, and D.B. McGavern. 2014. Microglia development and function. Annual Review of Immunology 32: 367–402.
Article CAS PubMed PubMed Central Google Scholar
Kroner, A., A.D. Greenhalgh, J.G. Zarruk, R. Passos Dos Santos, M. Gaestel, and S. David. 2014. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83 (5): 1098–1116.
Article CAS PubMed Google Scholar
Xu, F., J. Huang, Z. He, J. Chen, X. Tang, Z. Song, Q. Guo, and C. Huang. 2016. Microglial polarization dynamics in dorsal spinal cord in the early stages following chronic sciatic nerve damage. Neuroscience Letters 617: 6–13.
Article CAS PubMed Google Scholar
Wang, C., Q. Wang, Y. Lou, J. Xu, Z. Feng, Y. Chen, Q. Tang, G. Zheng, Z. Zhang, Y. Wu, N. Tian, Y. Zhou, H. Xu, and X. Zhang. 2018. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. Journal of Cellular and Molecular Medicine 22 (2): 1148–1166.
Article CAS PubMed Google Scholar
Xue, M.T., W.J. Sheng, X. Song, Y.J. Shi, Z.J. Geng, L. Shen, R. Wang, H.Z. Lü, and J.G. Hu. 2022. Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization. CNS Neuroscience & Therapeutics 28 (7): 1059–1071.
Shao, F., X. Pang, and G.H. Baeg. 2021. Targeting the JAK/STAT signaling pathway for breast Cancer. Current Medicinal Chemistry 28 (25): 5137–5151.
Sun, H., D. Ma, Y. Cheng, J. Li, W. Zhang, T. Jiang, Z. Li, X. Li, and H. Meng. 2023. The JAK-STAT signaling pathway in epilepsy. Current Neuropharmacology 21 (10): 2049–2069.
Article CAS PubMed PubMed Central Google Scholar
Yang, X., Z. Tang, P. Zhang, and L. Zhang. 2019. Research advances of JAK/STAT signaling pathway in lung Cancer. Zhongguo Fei Ai Za Zhi 22 (1): 45–51.
Ghasemian, A., H.A. Omear, Y. Mansoori, P. Mansouri, X. Deng, F. Darbeheshti, E. Zarenezhad, M. Kohansal, B. Pezeshki, Z. Wang, and H. Tang. 2023. Long non-coding RNAs and JAK/STAT signaling pathway regulation in colorectal cancer development. Frontiers in Genetics 14: 1297093.
Article CAS PubMed PubMed Central Google Scholar
Guo, X., C. Jiang, Z. Chen, X. Wang, F. Hong, and D. Hao. 2023. Regulation of the JAK/STAT signaling pathway in spinal cord injury: An updated review. Frontiers in Immunology 14: 1276445.
Article CAS PubMed PubMed Central Google Scholar
Ma, H., C. Wang, L. Han, F. Kong, Z. Liu, B. Zhang, W. Chu, H. Wang, L. Wang, Q. Li, W. Peng, H. Yang, C. Han, and X. Lu. 2023. Tofacitinib promotes functional recovery after spinal cord injury by regulating microglial polarization via JAK/STAT signaling pathway. International Journal of Biological Sciences 19 (15): 4865–4882.
Article CAS PubMed PubMed Central Google Scholar
Dai, J., G.Y. Yu, H.L. Sun, G.T. Zhu, G.D. Han, H.T. Jiang, and X.M. Tang. 2018. MicroRNA-210 promotes spinal cord injury recovery by inhibiting inflammation via the JAK-STAT pathway. European Review for Medical and Pharmacological Sciences 22 (20): 6609–6615.
Khorasanizadeh, M., M. Yousefifard, M. Eskian, Y. Lu, M. Chalangari, J.S. Harrop, S.B. Jazayeri, S. Seyedpour, B. Khodaei, M. Hosseini, and V. Rahimi-Movaghar. 2019. Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis. Journal of Neurosurgery. Spine 30 (5): 683–699.
Quadri, S.A., M. Farooqui, A. Ikram, A. Zafar, M.A. Khan, S.S. Suriya, C.F. Claus, B. Fiani, M. Rahman, A. Ramachandran, I.I.T. Armstrong, M.A. Taqi, and M.M. Mortazavi. 2020. Recent update on basic mechanisms of spinal cord injury. Neurosurgical Review 43 (2): 425–441.
David, S., and A. Kroner. 2011. Repertoire of microglial and macrophage responses after spinal cord injury. Nature Reviews Neuroscience 12 (7): 388–399.
Article CAS PubMed Google Scholar
Mukai, T., R. Gallant, S. Ishida, M. Kittaka, T. Yoshitaka, D.A. Fox, Y. Morita, K. Nishida, R. Rottapel, and Y. Ueki. 2015. Loss of SH3 domain-binding protein 2 function suppresses bone destruction in tumor necrosis factor-driven and collagen-induced arthritis in mice. Arthritis & Rhematology 67 (3): 656–667.
Zeng, L., F. Ye, Y. Jin, Y. Luo, and H. Zhu. 2022. Overexpression of DEL-1 downregulates SH3BP2 expression and inhibits Porphyromonas gingivalis-induced gingival inflammation in vivo and in vitro. Oral Health & Preventive Dentistry 20: 199–206.
Prod'Homme, V., L. Boyer, N. Dubois, A. Mallavialle, P. Munro, X. Mouska, I. Coste, R. Rottapel, S. Tartare-Deckert, and M. Deckert. 2015. Cherubism allele heterozygosity amplifies microbe-induced inflammatory responses in murine macrophages. The Journal of Clinical Investigation 125 (4): 1396–1400.
Article PubMed PubMed Central Google Scholar
Yoshitaka, T., S. Ishida, T. Mukai, M. Kittaka, E.J. Reichenberger, and Y. Ueki. 2014. Etanercept administration to neonatal SH3BP2 knock-in cherubism mice prevents TNF-α-induced inflammation and bone loss. Journal of Bone and Mineral Research 29 (5): 1170–1182.
Article CAS PubMed Google Scholar
Brockie, S., J. Hong, and M.G. Fehlings. 2021. The role of microglia in modulating Neuroinflammation after spinal cord injury. International Journal of Molecular Sciences 22 (18).
Gaojian, T., Q. Dingfei, L. Linwei, W. Xiaowei, Z. Zheng, L. Wei, Z. Tong, N. Benxiang, Q. Yanning, Z. Wei, and C. Jian. 2020. Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway. Cell Death Discovery 6 (1): 97.
Article PubMed PubMed Central Google Scholar
Wei, X., C. Huang, K. Chen, S. Liu, M. Wang, L. Yang, and Y. Wang. 2023. BMP7 attenuates Neuroinflammation after spinal
Comments (0)