Toxicity, Antibacterial, Antioxidant, Antidiabetic, and DNA Cleavage Effects of Dextran-Graft-Polyacrylamide/Zinc Oxide Nanosystems

Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28(8):668–681

Article  PubMed  CAS  Google Scholar 

Zhao X, Yu Z, Ding T (2020) Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. https://doi.org/10.3390/microorganisms8030425

Article  PubMed  PubMed Central  Google Scholar 

Yılmaz GE, Göktürk I, Ovezova M, Yılmaz F, Kılıç S, Denizli A (2023) Antimicrobial Nanomaterials: A Review. Hygiene 3(3):269–290

Article  Google Scholar 

Assefa M, Amare A (2022) Biofilm-associated multi-drug resistance in hospital-acquired infections: a review. Infect Drug Resist 15:5061–5068. https://doi.org/10.2147/idr.S379502

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/ijn.S121956

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee N-Y, Ko W-C, Hsueh P-R (2019) Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01153

Article  PubMed  PubMed Central  Google Scholar 

Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS (2021) Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon 7(3):e06456. https://doi.org/10.1016/j.heliyon.2021.e06456

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P t 40(4):277–283

PubMed  PubMed Central  Google Scholar 

Gibson B, Eyre-Walker A (2019) Investigating evolutionary rate variation in bacteria. J Mol Evol 87(9–10):317–326. https://doi.org/10.1007/s00239-019-09912-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M (2021) Function and inhibitory mechanisms of multidrug efflux pumps. Front Microbiol. https://doi.org/10.3389/fmicb.2021.737288

Article  PubMed  PubMed Central  Google Scholar 

Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562. https://doi.org/10.2147/ijn.S246764

Article  CAS  Google Scholar 

Bruna T, Maldonado-Bravo F, Jara P, Caro N (2021) Silver nanoparticles and their antibacterial applications. Int J Mol Sci. https://doi.org/10.3390/ijms22137202

Article  PubMed  PubMed Central  Google Scholar 

Ramanathan A (2019) Toxicity of nanoparticles_ challenges and opportunities. Appl Microsc 49(1):2. https://doi.org/10.1007/s42649-019-0004-6

Article  PubMed  PubMed Central  Google Scholar 

Zhang N, Xiong G, Liu Z (2022) Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.1001572

Article  PubMed  PubMed Central  Google Scholar 

Leong J, Tay J, Yang S, Yang C, Tan EWP, Wang Y, Tan BQ, Hor S, Chua YH, Tan JPK, Chen Q, Hedrick JL, Yang YY (2023) Nanocomplexes of biodegradable anticancer macromolecules: prolonged plasma half-life, reduced toxicity, and increased tumor targeting. Adv Healthc Mater 12(19):e2201560. https://doi.org/10.1002/adhm.202201560

Article  PubMed  CAS  Google Scholar 

Pereira D, Ferreira S, Ramírez-Rodríguez GB, Alves N, Sousa Â, Valente JFA (2024) Silver and antimicrobial polymer nanocomplexes to enhance biocidal effects. Int J Mol Sci 25(2):1256

Article  PubMed  PubMed Central  CAS  Google Scholar 

Grebinyk A, Prylutska S, Grebinyk S, Ponomarenko S, Virych P, Chumachenko V, Kutsevol N, Prylutskyy Y, Ritter U, Frohme M (2022) Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer. Nanoscale Adv 4(23):5077–5088. https://doi.org/10.1039/d2na00353h

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tkachenko A, Virych P, Myasoyedov V, Prokopiuk V, Onishchenko A, Butov D, Kuziv Y, Yeshchenko O, Zhong S, Nie G, Kutsevol N (2022) Cytotoxicity of hybrid noble metal-polymer composites. Biomed Res Int 2022:1487024. https://doi.org/10.1155/2022/1487024

Article  PubMed  PubMed Central  CAS  Google Scholar 

Onishchenko AI, Prokopiuk VY, Chumachenko VA, Virych PA, Tryfonyuk LY, Kutsevol NV, Tkachenko AS (2023) Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: hemolysis or eryptosis? Nanotechnology. https://doi.org/10.1088/1361-6528/ad02a3

Article  PubMed  Google Scholar 

Chumachenko V, Virych P, Nie G, Virych P, Yeshchenko O, Khort P, Tkachenko A, Prokopiuk V, Lukianova N, Zadvornyi T, Rawiso M, Ding L, Kutsevol N (2023) Combined dextran-graft-polyacrylamide/zinc oxide nanocarrier for effective anticancer therapy in vitro. Int J Nanomed 18:4821–4838. https://doi.org/10.2147/IJN.S416046

Article  CAS  Google Scholar 

Tkachenko A, Özdemir S, Tollu G, Dizge N, Ocakoglu K, Prokopiuk V, Onishchenko A, Chumachenko V, Virych P, Pavlenko V, Kutsevol N (2024) Antibacterial and antioxidant activity of gold and silver nanoparticles in dextran-polyacrylamide copolymers. Biometals 37(1):115–130. https://doi.org/10.1007/s10534-023-00532-7

Article  PubMed  CAS  Google Scholar 

Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7(3):219–242. https://doi.org/10.1007/s40820-015-0040-x

Article  PubMed  CAS  Google Scholar 

Mendes CR, Dilarri G, Forsan CF, Sapata VdMR, Lopes PRM, de Moraes PB, Montagnolli RN, Ferreira H, Bidoia ED (2022) Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 12(1):2658. https://doi.org/10.1038/s41598-022-06657-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kutsevol N, Bezugla T, Bezuglyi M, Rawiso M (2012) Branched dextran-graft-polyacrylamide copolymers as perspective materials for nanotechnology. Macromol Symp 317–318(1):82–90

Article  Google Scholar 

Kutsevol N, Bezuglyi M, Bezugla T, Rawiso M (2014) Star-Like dextran-graft-(polyacrylamide-co-polyacrylic acid) copolymers. Macromol Symp 335(1):12–16

Article  CAS  Google Scholar 

Bernfeld P (1955) [17] Amylases, α and β. Methods in Enzymology, Academic Press, pp 149–158

Ogunyemi OM, Gyebi GA, Saheed A, Paul J, Nwaneri-Chidozie V, Olorundare O, Adebayo J, Koketsu M, Aljarba N, Alkahtani S, Batiha GE, Olaiya CO (2022) Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Front Mol Biosci 9:866719. https://doi.org/10.3389/fmolb.2022.866719

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yefimova S, Klochkov V, Kavok N, Tkachenko A, Onishchenko A, Chumachenko T, Dizge N, Özdemir S, Gonca S, Ocakoglu K (2023) Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. J Biomed Mater Res B Appl Biomater 111(4):872–880. https://doi.org/10.1002/jbm.b.35197

Article  PubMed  CAS  Google Scholar 

Nayak S, Mengi S (2010) Immunostimulant activity of noni (Morinda citrifolia) on T and B lymphocytes. Pharm Biol 48(7):724–731. https://doi.org/10.3109/13880200903264434

Article  PubMed  Google Scholar 

Comments (0)

No login
gif