Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28(8):668–681
Article PubMed CAS Google Scholar
Zhao X, Yu Z, Ding T (2020) Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. https://doi.org/10.3390/microorganisms8030425
Article PubMed PubMed Central Google Scholar
Yılmaz GE, Göktürk I, Ovezova M, Yılmaz F, Kılıç S, Denizli A (2023) Antimicrobial Nanomaterials: A Review. Hygiene 3(3):269–290
Assefa M, Amare A (2022) Biofilm-associated multi-drug resistance in hospital-acquired infections: a review. Infect Drug Resist 15:5061–5068. https://doi.org/10.2147/idr.S379502
Article PubMed PubMed Central CAS Google Scholar
Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. https://doi.org/10.2147/ijn.S121956
Article PubMed PubMed Central CAS Google Scholar
Lee N-Y, Ko W-C, Hsueh P-R (2019) Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01153
Article PubMed PubMed Central Google Scholar
Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS (2021) Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon 7(3):e06456. https://doi.org/10.1016/j.heliyon.2021.e06456
Article PubMed PubMed Central CAS Google Scholar
Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P t 40(4):277–283
PubMed PubMed Central Google Scholar
Gibson B, Eyre-Walker A (2019) Investigating evolutionary rate variation in bacteria. J Mol Evol 87(9–10):317–326. https://doi.org/10.1007/s00239-019-09912-5
Article PubMed PubMed Central CAS Google Scholar
Nishino K, Yamasaki S, Nakashima R, Zwama M, Hayashi-Nishino M (2021) Function and inhibitory mechanisms of multidrug efflux pumps. Front Microbiol. https://doi.org/10.3389/fmicb.2021.737288
Article PubMed PubMed Central Google Scholar
Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562. https://doi.org/10.2147/ijn.S246764
Bruna T, Maldonado-Bravo F, Jara P, Caro N (2021) Silver nanoparticles and their antibacterial applications. Int J Mol Sci. https://doi.org/10.3390/ijms22137202
Article PubMed PubMed Central Google Scholar
Ramanathan A (2019) Toxicity of nanoparticles_ challenges and opportunities. Appl Microsc 49(1):2. https://doi.org/10.1007/s42649-019-0004-6
Article PubMed PubMed Central Google Scholar
Zhang N, Xiong G, Liu Z (2022) Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2022.1001572
Article PubMed PubMed Central Google Scholar
Leong J, Tay J, Yang S, Yang C, Tan EWP, Wang Y, Tan BQ, Hor S, Chua YH, Tan JPK, Chen Q, Hedrick JL, Yang YY (2023) Nanocomplexes of biodegradable anticancer macromolecules: prolonged plasma half-life, reduced toxicity, and increased tumor targeting. Adv Healthc Mater 12(19):e2201560. https://doi.org/10.1002/adhm.202201560
Article PubMed CAS Google Scholar
Pereira D, Ferreira S, Ramírez-Rodríguez GB, Alves N, Sousa Â, Valente JFA (2024) Silver and antimicrobial polymer nanocomplexes to enhance biocidal effects. Int J Mol Sci 25(2):1256
Article PubMed PubMed Central CAS Google Scholar
Grebinyk A, Prylutska S, Grebinyk S, Ponomarenko S, Virych P, Chumachenko V, Kutsevol N, Prylutskyy Y, Ritter U, Frohme M (2022) Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer. Nanoscale Adv 4(23):5077–5088. https://doi.org/10.1039/d2na00353h
Article PubMed PubMed Central CAS Google Scholar
Tkachenko A, Virych P, Myasoyedov V, Prokopiuk V, Onishchenko A, Butov D, Kuziv Y, Yeshchenko O, Zhong S, Nie G, Kutsevol N (2022) Cytotoxicity of hybrid noble metal-polymer composites. Biomed Res Int 2022:1487024. https://doi.org/10.1155/2022/1487024
Article PubMed PubMed Central CAS Google Scholar
Onishchenko AI, Prokopiuk VY, Chumachenko VA, Virych PA, Tryfonyuk LY, Kutsevol NV, Tkachenko AS (2023) Hemocompatibility of dextran-graft-polyacrylamide/zinc oxide nanosystems: hemolysis or eryptosis? Nanotechnology. https://doi.org/10.1088/1361-6528/ad02a3
Chumachenko V, Virych P, Nie G, Virych P, Yeshchenko O, Khort P, Tkachenko A, Prokopiuk V, Lukianova N, Zadvornyi T, Rawiso M, Ding L, Kutsevol N (2023) Combined dextran-graft-polyacrylamide/zinc oxide nanocarrier for effective anticancer therapy in vitro. Int J Nanomed 18:4821–4838. https://doi.org/10.2147/IJN.S416046
Tkachenko A, Özdemir S, Tollu G, Dizge N, Ocakoglu K, Prokopiuk V, Onishchenko A, Chumachenko V, Virych P, Pavlenko V, Kutsevol N (2024) Antibacterial and antioxidant activity of gold and silver nanoparticles in dextran-polyacrylamide copolymers. Biometals 37(1):115–130. https://doi.org/10.1007/s10534-023-00532-7
Article PubMed CAS Google Scholar
Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7(3):219–242. https://doi.org/10.1007/s40820-015-0040-x
Article PubMed CAS Google Scholar
Mendes CR, Dilarri G, Forsan CF, Sapata VdMR, Lopes PRM, de Moraes PB, Montagnolli RN, Ferreira H, Bidoia ED (2022) Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 12(1):2658. https://doi.org/10.1038/s41598-022-06657-y
Article PubMed PubMed Central CAS Google Scholar
Kutsevol N, Bezugla T, Bezuglyi M, Rawiso M (2012) Branched dextran-graft-polyacrylamide copolymers as perspective materials for nanotechnology. Macromol Symp 317–318(1):82–90
Kutsevol N, Bezuglyi M, Bezugla T, Rawiso M (2014) Star-Like dextran-graft-(polyacrylamide-co-polyacrylic acid) copolymers. Macromol Symp 335(1):12–16
Bernfeld P (1955) [17] Amylases, α and β. Methods in Enzymology, Academic Press, pp 149–158
Ogunyemi OM, Gyebi GA, Saheed A, Paul J, Nwaneri-Chidozie V, Olorundare O, Adebayo J, Koketsu M, Aljarba N, Alkahtani S, Batiha GE, Olaiya CO (2022) Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Front Mol Biosci 9:866719. https://doi.org/10.3389/fmolb.2022.866719
Article PubMed PubMed Central CAS Google Scholar
Yefimova S, Klochkov V, Kavok N, Tkachenko A, Onishchenko A, Chumachenko T, Dizge N, Özdemir S, Gonca S, Ocakoglu K (2023) Antimicrobial activity and cytotoxicity study of cerium oxide nanoparticles with two different sizes. J Biomed Mater Res B Appl Biomater 111(4):872–880. https://doi.org/10.1002/jbm.b.35197
Article PubMed CAS Google Scholar
Nayak S, Mengi S (2010) Immunostimulant activity of noni (Morinda citrifolia) on T and B lymphocytes. Pharm Biol 48(7):724–731. https://doi.org/10.3109/13880200903264434
Comments (0)