Polyphasic Identification of Rhizomonospora bruguierae gen. nov., sp. nov., Isolated from Mangrove Rhizosphere Soil

Kalakoutskii LV (1938) Ray fungi and related organisms-actinomycetales. Microbiology. https://doi.org/10.1023/B:MICI.0000044243.92023.1f

Article  Google Scholar 

Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE (1990) Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 136:19–36. https://doi.org/10.1099/00221287-136-1-19

Article  Google Scholar 

Koch C, Kroppenstedt RM, Rainey FA, Stackebrandt E (1996) 16S ribosomal DNA analysis of the genera Micromonospora, Actinoplanes, Catellatospora, Catenuloplanes, Couchioplanes, Dactylosporangium, and Pilimelia and emendation of the family Micromonosporaceae. Int J Syst Bacteriol 46:765–768. https://doi.org/10.1099/00207713-46-3-765

Article  PubMed  CAS  Google Scholar 

Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, actinobacteria classis nov. Int J Syst Bacteriol 47:479–491. https://doi.org/10.1099/00207713-47-2-479

Article  Google Scholar 

Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608. https://doi.org/10.1099/ijs.0.65780-0

Article  PubMed  CAS  Google Scholar 

Genilloud O, Micromonospora GI, Ørskov 1923, 156AL, (2012). In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI (eds) Bergey’s Manual of Systematic Bacteriology, 5, 2nd edn. Springer, New York, pp 1039–1057

Google Scholar 

Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P (2014) Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS ONE 9:e108522. https://doi.org/10.1371/journal.pone.0108522

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ay H, Nouioui I, Klenk HP, Cetin D, Igual JM, Sahin N, Isik K (2020) Genome-based classification of Micromonospora craterilacus sp. nov., a novel actinobacterium isolated from Nemrut Lake. Antonie Van Leeuwenhoek 113:791–801. https://doi.org/10.1007/s10482-020-01390-w

Article  PubMed  CAS  Google Scholar 

Intra B, Panbangred W, Inahashi Y, Také A, Mori M, Ōmura S, Matsumoto A (2020) Micromonospora pelagivivens sp. nov., a new species of the genus Micromonospora isolated from deep-sea sediment in Japan. Int J Syst Evol Microbiol 70:3069–3075. https://doi.org/10.1099/ijsem.0.004136

Article  PubMed  CAS  Google Scholar 

Komaki H, Tamura T, Ichikawa N, Oguchi A, Hamada M, Suzuki KI, Fujita N (2015) Genome-based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in a novel strain taxonomically close to the genus Salinispora. J Antibiot 68:767–770. https://doi.org/10.1038/ja.2015.69

Article  CAS  Google Scholar 

Colwell RR (1970) Polyphasic taxonomy of the genus vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104:410–433. https://doi.org/10.1128/jb.104.1.410-433.1970

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferm Technol 65:501–509. https://doi.org/10.1016/0385-6380(87)90108-7

Article  CAS  Google Scholar 

Hayakawa M, Nonomura H (1989) A new method for the intensive isolation of actinomycetes from soil. Actinomycetologica 3:95–104. https://doi.org/10.3209/saj.3_95

Article  Google Scholar 

Saito H, Miura KI (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629. https://doi.org/10.1016/0926-6550(63)90386-4

Article  PubMed  CAS  Google Scholar 

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

Article  PubMed  PubMed Central  CAS  Google Scholar 

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through the comparative studies of sequence evolution. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

Article  PubMed  CAS  Google Scholar 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Article  PubMed  CAS  Google Scholar 

Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.1093/sysbio/20.4.406

Article  Google Scholar 

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678

Article  PubMed  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tanizawa Y, Fujisawa T, Nakamura Y (2018) DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039. https://doi.org/10.1093/bioinformatics/btx713

Article  PubMed  CAS  Google Scholar 

Rodriguez-R LM, Konstantinidis KT (2014) Bypassing cultivation to identify bacterial species. Microbe 9:111–118. https://doi.org/10.1128/microbe.9.111.1

Article  Google Scholar 

Meier-Kolthoff JP, Klenk HP, Göker M (2014) Taxonomic use of DNA G + C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356. https://doi.org/10.1099/ijs.0.056994-0

Article  PubMed  CAS  Google Scholar 

Alanjary M, Steinke K, Ziemert N (2019) AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 47:276–282. https://doi.org/10.1093/nar/gkz282

Article  CAS  Google Scholar 

Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, Van Wezel GP, Medema MH, Weber T (2023) AntiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 51(W1):W46–W50. https://doi.org/10.1093/nar/gkad344

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hamada M, Shibata C, Tamura T, Nurkanto A, Ratnakomala S, Lisdiyanti P, Suzuki KI (2016) Cellulosimicrobium marinum sp. nov., an actinobacterium isolated from sea sediment. Arch Microbiol 198:439–444. https://doi.org/10.1007/s00203-016-1204-x

Article  PubMed  CAS  Google Scholar 

Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Meth 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

Article  CAS  Google Scholar 

Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark, DE

Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamura J (1989) High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal Biochem 180:351–357. https://doi.org/10.1016/0003-2697(89)90444-2

Article  PubMed  CAS  Google Scholar 

Yang X, Zhao Y, Wang Q, Wang H, Mei Q (2005) Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal Sci 21:1177–1180.

Comments (0)

No login
gif