Cold-adapted characteristics and gene knockout of alkyl hydroperoxide reductase subunit C in Antarctic Psychrobacter sp. ANT206

Ahmed Z, Zulfiqar H, Tang L, Lin H (2022) A statistical analysis of the sequence and structure of thermophilic and non-thermophilic proteins. Int J Mol Sci 23:10116. https://doi.org/10.3390/ijms231710116

Article  PubMed  PubMed Central  CAS  Google Scholar 

Al Ghanayem AA, Joseph B (2020) Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl Microbiol Biotechnol 104:2871–2882. https://doi.org/10.1007/s00253-020-10429-x

Article  PubMed  CAS  Google Scholar 

Ali M, Shukuri M, Mohd Fuzi SF, Ganasen M, Abdul Rahman RNZR, Basri M, Salleh AB (2013) Structural adaptation of cold-active RTX lipase from Pseudomonas sp. Strain AMS8 revealed via homology and molecular dynamics simulation approaches. BioMed Res Int 2013:1–9. https://doi.org/10.1155/2013/925373

Article  CAS  Google Scholar 

Bae E, Moon S, Phillips GN (2015) Molecular dynamics simulation of a psychrophilic adenylate kinase. J Korean Soc Appl Biol Chem 58:209–212. https://doi.org/10.1007/s13765-015-0033-y

Article  CAS  Google Scholar 

Baghel VS, Tripathi RD, Ramteke PW, Gopal K, Dwivedi S, Jain RK, Singh SN (2005) Psychrotrophic proteolytic bacteria from cold environment of gangotri glacier, western himalaya, india. Enzyme Microb Technol 36:654–659. https://doi.org/10.1016/j.enzmictec.2004.09.005

Article  CAS  Google Scholar 

Barati F, Hosseini F, Vafaee R et al (2024) In silico approaches to investigate enzyme immobilization: a comprehensive systematic review. Phys Chem Chem Phys 26:5744–5761. https://doi.org/10.1039/D3CP03989G

Article  PubMed  CAS  Google Scholar 

Benrezkallah D (2024) Molecular dynamics simulations at high temperatures of the aeropyrum pernix L7Ae thermostable protein: insight into the unfolding pathway. J Mol Graph Model 127:108700. https://doi.org/10.1016/j.jmgm.2023.108700

Article  PubMed  CAS  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  PubMed  CAS  Google Scholar 

Bruno S, Coppola D, Di Prisco G, Giordano D, Verde C (2019) Enzymes from marine polar regions and their biotechnological applications. Mar Drugs 17:544. https://doi.org/10.3390/md17100544

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215. https://doi.org/10.1038/35025109

Article  PubMed  CAS  Google Scholar 

Chapadgaonkar SS, Das BB, Shourie A (2024) Harnessing the untapped potential of cold-adapted enzymes. Ind Biotechnol. https://doi.org/10.1089/ind.2024.0017

Article  Google Scholar 

Chen L, Xie Q, Nathan C (1998) Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1:795–805. https://doi.org/10.1016/S1097-2765(00)80079-9

Article  PubMed  CAS  Google Scholar 

Chen NX, Chu YJ, Ni B, Hsu P, Wong HC (2021) Organic hydroperoxide resistance gene ohr (VPA1681) confers protection against organic peroxides in the presence of alkyl hydroperoxide reductase genes in Vibrio parahaemolyticus. Appl Environ Microbiol 87:e00861-e921. https://doi.org/10.1128/AEM.00861-21

Article  PubMed  PubMed Central  CAS  Google Scholar 

Collins T, Feller G (2023) Psychrophilic enzymes: strategies for cold-adaptation. Essays Biochem 67:701–713. https://doi.org/10.1042/EBC20220193

Article  PubMed  CAS  Google Scholar 

Dip PV, Kamariah N, Subramanian Manimekalai MS et al (2014) Structure, mechanism and ensemble formation of the alkylhydroperoxide reductase subunits AhpC and AhpF from Escherichia coli. Acta Crystallogr D Biol Crystallogr 70:2848–2862. https://doi.org/10.1107/S1399004714019233

Article  PubMed  CAS  Google Scholar 

Du X, Sang P, Xia YL et al (2017) Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations. J Biomol Struct Dyn 35:1500–1517. https://doi.org/10.1080/07391102.2016.1188155

Article  PubMed  CAS  Google Scholar 

Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:1–28. https://doi.org/10.1155/2013/512840

Article  Google Scholar 

Fiorentino G, Contursi P, Gallo G, Bartolucci S, Limauro D (2020) A peroxiredoxin of Thermus thermophilus HB27: biochemical characterization of a new player in the antioxidant defence. Int J Biol Macromol 153:608–615. https://doi.org/10.1016/j.ijbiomac.2020.03.052

Article  PubMed  CAS  Google Scholar 

Fornbacke M, Clarsund M (2013) Cold-adapted proteases as an emerging class of therapeutics. Infect Dis Ther 2:15–26. https://doi.org/10.1007/s40121-013-0002-x

Article  PubMed  PubMed Central  Google Scholar 

Fukumori F, Kishii M (2001) Molecular cloning and transcriptional analysis of the alkyl hydroperoxide reductase genes from Pseudomonas putida KT2442. J Gen Appl Microbiol 47:269–277. https://doi.org/10.2323/jgam.47.269

Article  PubMed  CAS  Google Scholar 

Gupta DN, Dalal V, Savita BK, Dhankhar P, Ghosh DK, Kumar P, Sharma AK (2022) In silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus. J Biomol Struct Dyn 40:8725–8739. https://doi.org/10.1080/07391102.2021.1916597

Article  PubMed  CAS  Google Scholar 

Hall A, Karplus PA, Poole LB (2009) Typical 2-Cys peroxiredoxins-structures, mechanisms and functions. FEBS J 276:2469–2477. https://doi.org/10.1111/j.1742-4658.2009.06985.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hillas PJ, Del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano PR (2000) The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem 275:18801–18809. https://doi.org/10.1074/jbc.M001001200

Article  PubMed  CAS  Google Scholar 

Hong EJ, Jeong H, Lee DS, Kim Y, Lee HS (2019) The ahpD gene of Corynebacterium glutamicum plays an important role in hydrogen peroxide-induced oxidative stress response. J Biochem (Tokyo) 165:197–204. https://doi.org/10.1093/jb/mvy097

Article  PubMed  CAS  Google Scholar 

Hong SH, Singh S, Tripathi BN et al (2020) Functional properties and the oligomeric state of alkyl hydroperoxide reductase subunit F (AhpF) in Pseudomonas aeruginosa. Protoplasma 257:807–817. https://doi.org/10.1007/s00709-019-01465-0

Article  PubMed  CAS  Google Scholar 

Huang A, Lu F, Liu F (2023) Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor. Front Microbiol 14:1130594. https://doi.org/10.3389/fmicb.2023.1130594

Article  PubMed  PubMed Central  Google Scholar 

Jacobson FS, Morgan RW, Christman MF, Ames BN (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. J Biol Chem 264:1488–1496. https://doi.org/10.1016/S0021-9258(18)94214-6

Article  PubMed  CAS  Google Scholar 

Jaeger T, Budde H, Flohe L, Menge U, Singh M, Trujillo M, Radi R (2004) Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch Biochem Biophys 423:182–191. https://doi.org/10.1016/j.abb.2003.11.021

Article  PubMed  CAS  Google Scholar 

Jiang G, Yang J, Li X et al (2019) Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS Microbiol Lett 366(3):fnz014. https://doi.org/10.1093/femsle/fnz014

Comments (0)

No login
gif