Ahmed Z, Zulfiqar H, Tang L, Lin H (2022) A statistical analysis of the sequence and structure of thermophilic and non-thermophilic proteins. Int J Mol Sci 23:10116. https://doi.org/10.3390/ijms231710116
Article PubMed PubMed Central CAS Google Scholar
Al Ghanayem AA, Joseph B (2020) Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl Microbiol Biotechnol 104:2871–2882. https://doi.org/10.1007/s00253-020-10429-x
Article PubMed CAS Google Scholar
Ali M, Shukuri M, Mohd Fuzi SF, Ganasen M, Abdul Rahman RNZR, Basri M, Salleh AB (2013) Structural adaptation of cold-active RTX lipase from Pseudomonas sp. Strain AMS8 revealed via homology and molecular dynamics simulation approaches. BioMed Res Int 2013:1–9. https://doi.org/10.1155/2013/925373
Bae E, Moon S, Phillips GN (2015) Molecular dynamics simulation of a psychrophilic adenylate kinase. J Korean Soc Appl Biol Chem 58:209–212. https://doi.org/10.1007/s13765-015-0033-y
Baghel VS, Tripathi RD, Ramteke PW, Gopal K, Dwivedi S, Jain RK, Singh SN (2005) Psychrotrophic proteolytic bacteria from cold environment of gangotri glacier, western himalaya, india. Enzyme Microb Technol 36:654–659. https://doi.org/10.1016/j.enzmictec.2004.09.005
Barati F, Hosseini F, Vafaee R et al (2024) In silico approaches to investigate enzyme immobilization: a comprehensive systematic review. Phys Chem Chem Phys 26:5744–5761. https://doi.org/10.1039/D3CP03989G
Article PubMed CAS Google Scholar
Benrezkallah D (2024) Molecular dynamics simulations at high temperatures of the aeropyrum pernix L7Ae thermostable protein: insight into the unfolding pathway. J Mol Graph Model 127:108700. https://doi.org/10.1016/j.jmgm.2023.108700
Article PubMed CAS Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Article PubMed CAS Google Scholar
Bruno S, Coppola D, Di Prisco G, Giordano D, Verde C (2019) Enzymes from marine polar regions and their biotechnological applications. Mar Drugs 17:544. https://doi.org/10.3390/md17100544
Article PubMed PubMed Central CAS Google Scholar
Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215. https://doi.org/10.1038/35025109
Article PubMed CAS Google Scholar
Chapadgaonkar SS, Das BB, Shourie A (2024) Harnessing the untapped potential of cold-adapted enzymes. Ind Biotechnol. https://doi.org/10.1089/ind.2024.0017
Chen L, Xie Q, Nathan C (1998) Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol Cell 1:795–805. https://doi.org/10.1016/S1097-2765(00)80079-9
Article PubMed CAS Google Scholar
Chen NX, Chu YJ, Ni B, Hsu P, Wong HC (2021) Organic hydroperoxide resistance gene ohr (VPA1681) confers protection against organic peroxides in the presence of alkyl hydroperoxide reductase genes in Vibrio parahaemolyticus. Appl Environ Microbiol 87:e00861-e921. https://doi.org/10.1128/AEM.00861-21
Article PubMed PubMed Central CAS Google Scholar
Collins T, Feller G (2023) Psychrophilic enzymes: strategies for cold-adaptation. Essays Biochem 67:701–713. https://doi.org/10.1042/EBC20220193
Article PubMed CAS Google Scholar
Dip PV, Kamariah N, Subramanian Manimekalai MS et al (2014) Structure, mechanism and ensemble formation of the alkylhydroperoxide reductase subunits AhpC and AhpF from Escherichia coli. Acta Crystallogr D Biol Crystallogr 70:2848–2862. https://doi.org/10.1107/S1399004714019233
Article PubMed CAS Google Scholar
Du X, Sang P, Xia YL et al (2017) Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations. J Biomol Struct Dyn 35:1500–1517. https://doi.org/10.1080/07391102.2016.1188155
Article PubMed CAS Google Scholar
Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013:1–28. https://doi.org/10.1155/2013/512840
Fiorentino G, Contursi P, Gallo G, Bartolucci S, Limauro D (2020) A peroxiredoxin of Thermus thermophilus HB27: biochemical characterization of a new player in the antioxidant defence. Int J Biol Macromol 153:608–615. https://doi.org/10.1016/j.ijbiomac.2020.03.052
Article PubMed CAS Google Scholar
Fornbacke M, Clarsund M (2013) Cold-adapted proteases as an emerging class of therapeutics. Infect Dis Ther 2:15–26. https://doi.org/10.1007/s40121-013-0002-x
Article PubMed PubMed Central Google Scholar
Fukumori F, Kishii M (2001) Molecular cloning and transcriptional analysis of the alkyl hydroperoxide reductase genes from Pseudomonas putida KT2442. J Gen Appl Microbiol 47:269–277. https://doi.org/10.2323/jgam.47.269
Article PubMed CAS Google Scholar
Gupta DN, Dalal V, Savita BK, Dhankhar P, Ghosh DK, Kumar P, Sharma AK (2022) In silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus. J Biomol Struct Dyn 40:8725–8739. https://doi.org/10.1080/07391102.2021.1916597
Article PubMed CAS Google Scholar
Hall A, Karplus PA, Poole LB (2009) Typical 2-Cys peroxiredoxins-structures, mechanisms and functions. FEBS J 276:2469–2477. https://doi.org/10.1111/j.1742-4658.2009.06985.x
Article PubMed PubMed Central CAS Google Scholar
Hillas PJ, Del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano PR (2000) The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem 275:18801–18809. https://doi.org/10.1074/jbc.M001001200
Article PubMed CAS Google Scholar
Hong EJ, Jeong H, Lee DS, Kim Y, Lee HS (2019) The ahpD gene of Corynebacterium glutamicum plays an important role in hydrogen peroxide-induced oxidative stress response. J Biochem (Tokyo) 165:197–204. https://doi.org/10.1093/jb/mvy097
Article PubMed CAS Google Scholar
Hong SH, Singh S, Tripathi BN et al (2020) Functional properties and the oligomeric state of alkyl hydroperoxide reductase subunit F (AhpF) in Pseudomonas aeruginosa. Protoplasma 257:807–817. https://doi.org/10.1007/s00709-019-01465-0
Article PubMed CAS Google Scholar
Huang A, Lu F, Liu F (2023) Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor. Front Microbiol 14:1130594. https://doi.org/10.3389/fmicb.2023.1130594
Article PubMed PubMed Central Google Scholar
Jacobson FS, Morgan RW, Christman MF, Ames BN (1989) An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. J Biol Chem 264:1488–1496. https://doi.org/10.1016/S0021-9258(18)94214-6
Article PubMed CAS Google Scholar
Jaeger T, Budde H, Flohe L, Menge U, Singh M, Trujillo M, Radi R (2004) Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch Biochem Biophys 423:182–191. https://doi.org/10.1016/j.abb.2003.11.021
Article PubMed CAS Google Scholar
Jiang G, Yang J, Li X et al (2019) Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS Microbiol Lett 366(3):fnz014. https://doi.org/10.1093/femsle/fnz014
Comments (0)