Abanoz-Seçgin B, Otur Ç, Okay S, Kurt-Kızıldoğan A (2023) The regulatory role of Fur-encoding SCLAV_3199 in iron homeostasis in Streptomyces clavuligerus. Gene 878:147594. https://doi.org/10.1016/j.gene.2023.147594
Article PubMed CAS Google Scholar
Aigle B, Wietzorrek A, Takano E, Bibb MJ (2000) A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor A3(2) results in pleiotropic loss of antibiotic production. Mol Microbiol 37:995–1004. https://doi.org/10.1046/j.1365-2958.2000.02022.x
Article PubMed CAS Google Scholar
Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ (2014) Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 10(8):e1004554. https://doi.org/10.1371/journal.pgen.1004554
Article PubMed PubMed Central CAS Google Scholar
Banerjee DK, Seijo-Lebrón A, Baksi K (2022) Glycotherapy: a new paradigm in breast cancer research. Biomolecules 12:487. https://doi.org/10.3390/biom12040487
Article PubMed PubMed Central CAS Google Scholar
Baş L, Otur Ç, Kurt-Kızıldoğan A (2020) Enhanced Tunicamycin Biosynthesis in BldG overexpressed Streptomyces clavuligerus. Appl Biochem Microbiol 56:412–419. https://doi.org/10.1134/S000368382004002X
Bednarz B, Kotowska M, Pawlik KJ (2019) Multi-level regulation of coelimycin synthesis in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 103(16):6423–6434. https://doi.org/10.1007/s00253-019-09975-w
Article PubMed PubMed Central CAS Google Scholar
Bignell DR, Tahlan K, Colvin KR, Jensen SE, Leskiw BK (2005) Expression of CcaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on BldG. Antimicrob Agents Chemother 49(4):1529–1541. https://doi.org/10.1128/aac.49.4.1529-1541.2005
Article PubMed PubMed Central CAS Google Scholar
Brandish PE, Kimura KI, Inukai M, Southgate R, Lonsdale JT, Bugg TD (1996) Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob Agents Chemother 40:1640–1644. https://doi.org/10.1128/aac.40.7.1640
Article PubMed PubMed Central CAS Google Scholar
Bu XL, Weng JY, He BB, Xu MJ, Xu J (2019) A novel AdpA homologue negatively regulates morphological differentiation in Streptomyces xiamenensis 318. Appl Environ Microbiol 85(7):e03107–e03118. https://doi.org/10.1128/AEM.03107-18
Article PubMed PubMed Central CAS Google Scholar
Burton K (1968) Determination of DNA concentration with diphenylamine. Methods Enzymol 12:163–166. https://doi.org/10.1016/0076-6879(67)12127-7
Bush MJ (2018) The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 110:663–676. https://doi.org/10.1111/mmi.14117
Article PubMed PubMed Central CAS Google Scholar
Bush M, Tschowri N, Schlimpert S, Flärdh K, Buttner MJ (2015) c-diGMP signalling and the regulation of developmental transitions in Streptomycetes. Nat Rev Microbiol 13:749–760. https://doi.org/10.1038/nrmicro3546
Article PubMed CAS Google Scholar
Chen W, Qu D, Zhai L, Tao M, Wang Y, Lin S, Price NP, Deng Z (2010) Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis. Protein Cell 12:1093–1105. https://doi.org/10.1007/s13238-010-0127-6
Ferguson NL, Peña-Castillo L, Moore MA, Bignell DR, Tahlan K (2016) Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 43(4):537–555. https://doi.org/10.1007/s10295-016-1733-y
Article PubMed CAS Google Scholar
Fernández-Martínez L, Bibb M (2014) Use of the meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes. Sci Rep 4:7100. https://doi.org/10.1038/srep07100
Article PubMed PubMed Central Google Scholar
Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting Streptomycetes. FEMS Microbiol Lett 155:223–229. https://doi.org/10.1111/j.1574-6968.1997.tb13882.x
Article PubMed CAS Google Scholar
Gabani BB, Sulochana SP, Kiran V, Todmal U, Mullangi R (2019) Validated LC–ESI–MS/MS method for the determination of tunicamycin in rat plasma: application to a pharmacokinetic study. Biomed Chromatogr 33:e4661. https://doi.org/10.1002/bmc.4661
Article PubMed CAS Google Scholar
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying similarity between motifs. Genome Biol 8: R24 (2007). https://doi.org/10.1186/gb-2007-8-2-r24
Higo A, Hara H, Horinouchi S, Ohnishi Y (2012) Genome-wide distribution of AdpA a global regulator for secondary metabolism and morphological differentiation in Streptomyces revealed the extent and complexity of the AdpA regulatory network. DNA Res 19:259–273. https://doi.org/10.1093/dnares/dss010
Article PubMed PubMed Central CAS Google Scholar
Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG (1989) Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31:272–277. https://doi.org/10.1007/BF00258408
Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C (2022) AdpA a developmental regulator promotes ε-poly-L-lysine biosynthesis in Streptomyces albulus. Microb. Cell Factories 21(1):60. https://doi.org/10.1186/s12934-022-01785-6
Hwang S, Lee N, Jeong Y, Lee Y, Kim W, Cho S, Palsso BO, Cho BK (2019) Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome. Nucleic Acids Res 47(12):6114–6129. https://doi.org/10.1093/nar/gkz471
Article PubMed PubMed Central CAS Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484. https://doi.org/10.1093/nar/gkm882
Karki S, Kwon SY, Kwon HJ (2011) Cloning of tunicamycin biosynthetic gene cluster from Streptomyces chartreusis NRRL 3882. J Korean Soc Appl Biol Chem 54:136–140. https://doi.org/10.3839/jksabc.2011.021
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317
Article PubMed PubMed Central CAS Google Scholar
Köroğlu TE, Oğülür I, Mutlu S, Yazgan-Karataş A, Ozcengiz G (2011) Global regulatory systems operating in bacilysin biosynthesis in Bacillus subtilis. J Mol Microbiol Biotechnol 20(3):144–155. https://doi.org/10.1159/000328639
Article PubMed CAS Google Scholar
Kurt A, Álvarez-Álvarez R, Liras P, Özcengiz G (2013) Role of the cmch–ccar intergenic region and ccaR overexpression in cephamycin C biosynthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol 97(13):5869–5880. https://doi.org/10.1007/s00253-013-4721-4
Article PubMed CAS Google Scholar
Kurt-Kızıldoğan A, Vanlı-Jaccard G, Mutlu A, Sertdemir G, Özcengiz G (2017) Genetic engineering of an industrial strain of Streptomyces clavuligerus for further enhancement of clavulanic acid production. Turk J Biol 41:342–353. https://doi.org/10.3906/biy-1608-17
Kurt-Kızıldoğan A, Çelik G, Ünsal
Comments (0)