Global regulator AdpA directly binds to tunicamycin gene cluster and negatively regulates tunicamycin biosynthesis in Streptomyces clavuligerus

Abanoz-Seçgin B, Otur Ç, Okay S, Kurt-Kızıldoğan A (2023) The regulatory role of Fur-encoding SCLAV_3199 in iron homeostasis in Streptomyces clavuligerus. Gene 878:147594. https://doi.org/10.1016/j.gene.2023.147594

Article  PubMed  CAS  Google Scholar 

Aigle B, Wietzorrek A, Takano E, Bibb MJ (2000) A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor A3(2) results in pleiotropic loss of antibiotic production. Mol Microbiol 37:995–1004. https://doi.org/10.1046/j.1365-2958.2000.02022.x

Article  PubMed  CAS  Google Scholar 

Al-Bassam MM, Bibb MJ, Bush MJ, Chandra G, Buttner MJ (2014) Response regulator heterodimer formation controls a key stage in Streptomyces development. PLoS Genet 10(8):e1004554. https://doi.org/10.1371/journal.pgen.1004554

Article  PubMed  PubMed Central  CAS  Google Scholar 

Banerjee DK, Seijo-Lebrón A, Baksi K (2022) Glycotherapy: a new paradigm in breast cancer research. Biomolecules 12:487. https://doi.org/10.3390/biom12040487

Article  PubMed  PubMed Central  CAS  Google Scholar 

Baş L, Otur Ç, Kurt-Kızıldoğan A (2020) Enhanced Tunicamycin Biosynthesis in BldG overexpressed Streptomyces clavuligerus. Appl Biochem Microbiol 56:412–419. https://doi.org/10.1134/S000368382004002X

Article  Google Scholar 

Bednarz B, Kotowska M, Pawlik KJ (2019) Multi-level regulation of coelimycin synthesis in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 103(16):6423–6434. https://doi.org/10.1007/s00253-019-09975-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bignell DR, Tahlan K, Colvin KR, Jensen SE, Leskiw BK (2005) Expression of CcaR, encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus, is dependent on BldG. Antimicrob Agents Chemother 49(4):1529–1541. https://doi.org/10.1128/aac.49.4.1529-1541.2005

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brandish PE, Kimura KI, Inukai M, Southgate R, Lonsdale JT, Bugg TD (1996) Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob Agents Chemother 40:1640–1644. https://doi.org/10.1128/aac.40.7.1640

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bu XL, Weng JY, He BB, Xu MJ, Xu J (2019) A novel AdpA homologue negatively regulates morphological differentiation in Streptomyces xiamenensis 318. Appl Environ Microbiol 85(7):e03107–e03118. https://doi.org/10.1128/AEM.03107-18

Article  PubMed  PubMed Central  CAS  Google Scholar 

Burton K (1968) Determination of DNA concentration with diphenylamine. Methods Enzymol 12:163–166. https://doi.org/10.1016/0076-6879(67)12127-7

Article  CAS  Google Scholar 

Bush MJ (2018) The actinobacterial WhiB-like (Wbl) family of transcription factors. Mol Microbiol 110:663–676. https://doi.org/10.1111/mmi.14117

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bush M, Tschowri N, Schlimpert S, Flärdh K, Buttner MJ (2015) c-diGMP signalling and the regulation of developmental transitions in Streptomycetes. Nat Rev Microbiol 13:749–760. https://doi.org/10.1038/nrmicro3546

Article  PubMed  CAS  Google Scholar 

Chen W, Qu D, Zhai L, Tao M, Wang Y, Lin S, Price NP, Deng Z (2010) Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis. Protein Cell 12:1093–1105. https://doi.org/10.1007/s13238-010-0127-6

Article  CAS  Google Scholar 

Ferguson NL, Peña-Castillo L, Moore MA, Bignell DR, Tahlan K (2016) Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 43(4):537–555. https://doi.org/10.1007/s10295-016-1733-y

Article  PubMed  CAS  Google Scholar 

Fernández-Martínez L, Bibb M (2014) Use of the meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes. Sci Rep 4:7100. https://doi.org/10.1038/srep07100

Article  PubMed  PubMed Central  Google Scholar 

Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting Streptomycetes. FEMS Microbiol Lett 155:223–229. https://doi.org/10.1111/j.1574-6968.1997.tb13882.x

Article  PubMed  CAS  Google Scholar 

Gabani BB, Sulochana SP, Kiran V, Todmal U, Mullangi R (2019) Validated LC–ESI–MS/MS method for the determination of tunicamycin in rat plasma: application to a pharmacokinetic study. Biomed Chromatogr 33:e4661. https://doi.org/10.1002/bmc.4661

Article  PubMed  CAS  Google Scholar 

Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying similarity between motifs. Genome Biol 8: R24 (2007). https://doi.org/10.1186/gb-2007-8-2-r24

Higo A, Hara H, Horinouchi S, Ohnishi Y (2012) Genome-wide distribution of AdpA a global regulator for secondary metabolism and morphological differentiation in Streptomyces revealed the extent and complexity of the AdpA regulatory network. DNA Res 19:259–273. https://doi.org/10.1093/dnares/dss010

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hobbs G, Frazer CM, Gardner DCJ, Cullum JA, Oliver SG (1989) Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31:272–277. https://doi.org/10.1007/BF00258408

Article  CAS  Google Scholar 

Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C (2022) AdpA a developmental regulator promotes ε-poly-L-lysine biosynthesis in Streptomyces albulus. Microb. Cell Factories 21(1):60. https://doi.org/10.1186/s12934-022-01785-6

Article  CAS  Google Scholar 

Hwang S, Lee N, Jeong Y, Lee Y, Kim W, Cho S, Palsso BO, Cho BK (2019) Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome. Nucleic Acids Res 47(12):6114–6129. https://doi.org/10.1093/nar/gkz471

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484. https://doi.org/10.1093/nar/gkm882

Article  CAS  Google Scholar 

Karki S, Kwon SY, Kwon HJ (2011) Cloning of tunicamycin biosynthetic gene cluster from Streptomyces chartreusis NRRL 3882. J Korean Soc Appl Biol Chem 54:136–140. https://doi.org/10.3839/jksabc.2011.021

Article  CAS  Google Scholar 

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. https://doi.org/10.1038/nmeth.3317

Article  PubMed  PubMed Central  CAS  Google Scholar 

Köroğlu TE, Oğülür I, Mutlu S, Yazgan-Karataş A, Ozcengiz G (2011) Global regulatory systems operating in bacilysin biosynthesis in Bacillus subtilis. J Mol Microbiol Biotechnol 20(3):144–155. https://doi.org/10.1159/000328639

Article  PubMed  CAS  Google Scholar 

Kurt A, Álvarez-Álvarez R, Liras P, Özcengiz G (2013) Role of the cmch–ccar intergenic region and ccaR overexpression in cephamycin C biosynthesis in Streptomyces clavuligerus. Appl Microbiol Biotechnol 97(13):5869–5880. https://doi.org/10.1007/s00253-013-4721-4

Article  PubMed  CAS  Google Scholar 

Kurt-Kızıldoğan A, Vanlı-Jaccard G, Mutlu A, Sertdemir G, Özcengiz G (2017) Genetic engineering of an industrial strain of Streptomyces clavuligerus for further enhancement of clavulanic acid production. Turk J Biol 41:342–353. https://doi.org/10.3906/biy-1608-17

Article  CAS  Google Scholar 

Kurt-Kızıldoğan A, Çelik G, Ünsal

Comments (0)

No login
gif