Exploring flagellar contributions to motility and virulence in Arcobacter butzleri

Adesiji YO (2010) Faecal shedding of Arcobacter species following experimental infection in rats: public health implications. Cent Eur J Med 5:470–474. https://doi.org/10.2478/s11536-009-0109-3

Article  Google Scholar 

Alm RA, Guerry P, Trust TJ (1993) The Campylobacter Sigma 54 flaB flagellin promoter is subject to environmental regulation. J Bacteriol 175:4448. https://doi.org/10.1128/JB.175.14.4448-4455.1993

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aroori SV, Cogan TA, Humphrey TJ (2013) The effect of growth temperature on the pathogenicity of Campylobacter. Curr Microbiol 67:333–340. https://doi.org/10.1007/S00284-013-0370-1

Article  PubMed  CAS  Google Scholar 

Baztarrika I, Wösten MMSM, Alonso R, Martínez-Ballesteros I, Martinez-Malaxetxebarria I (2024) Genes involved in the adhesion and invasion of Arcobacter butzleri. Microb Pathog 192:106752. https://doi.org/10.1016/j.micpath.2024.106752

Article  CAS  Google Scholar 

Bonifácio M, Mateus C, Alves AR et al (2021) Natural transformation as a mechanism of horizontal gene transfer in Aliarcobacter Butzleri. Pathogens 10:1–15. https://doi.org/10.3390/pathogens10070909

Article  CAS  Google Scholar 

Bridges AA, Fei C, Bassler BL (2020) Identification of signaling pathways, matrix-digestion enzymes, and motility components controlling Vibrio cholerae biofilm dispersal. Proc Natl Acad Sci U S A 117:32639–32647. https://doi.org/10.1073/PNAS.2021166117

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bruegge J, Zur, Hanisch C, Einspanier R et al (2014) Arcobacter butzleri induces a pro-inflammatory response in THP-1 derived macrophages and has limited ability for intracellular survival. Int J Med Microbiol 304:1209–1217. https://doi.org/10.1016/j.ijmm.2014.08.017

Article  PubMed  CAS  Google Scholar 

Buzzanca D, Botta C, Ferrocino I et al (2021) Functional pangenome analysis reveals high virulence plasticity of Aliarcobacter butzleri and affinity to human mucus. Genomics 113:2065–2076. https://doi.org/10.1016/J.YGENO.2021.05.001

Article  PubMed  CAS  Google Scholar 

Chaban B, Hughes HV, Beeby M (2015) The flagellum in bacterial pathogens: for motility and a whole lot more. Semin Cell Dev Biol 46:91–103. https://doi.org/10.1016/J.SEMCDB.2015.10.032

Article  PubMed  CAS  Google Scholar 

Chaban B, Coleman I, Beeby M (2018) Evolution of higher torque in Campylobacter-Type bacterial flagellar motors. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-017-18115-1

Article  CAS  Google Scholar 

Derrien M, van Passel MWJ, van de Bovenkamp JHB et al (2010) Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1:254. https://doi.org/10.4161/GMIC.1.4.12778

Article  PubMed  PubMed Central  Google Scholar 

Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392. https://doi.org/10.1086/322972

Article  PubMed  CAS  Google Scholar 

Duan Q, Zhou M, Zhu L, Zhu G (2013) Flagella and bacterial pathogenicity. J Basic Microbiol 53:1–8. https://doi.org/10.1002/JOBM.201100335

Article  PubMed  Google Scholar 

Erdem AL, Avelino F, Xicohtencatl-Cortes J, Girón JA (2007) Host Protein Binding and Adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol 189:7426. https://doi.org/10.1128/JB.00464-07

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ferreira S, Queiroz Ja, Oleastro M, Domingues FC (2014) Genotypic and phenotypic features of Arcobacter butzleri pathogenicity. Microb Pathog 76:19–25. https://doi.org/10.1016/j.micpath.2014.09.004

Article  PubMed  Google Scholar 

Ferreira S, Queiroz JA, Oleastro M, Domingues FC (2016) Insights in the pathogenesis and resistance of Arcobacter : a review. Crit Rev Microbiol 42:364–383. https://doi.org/10.3109/1040841X.2014.954523

Article  PubMed  CAS  Google Scholar 

Ferreira S, Correia DR, Oleastro M, Domingues FC (2018) Arcobacter butzleri Ciprofloxacin Resistance: point mutations in DNA gyrase A and role on fitness cost. Microb Drug Resist 00. https://doi.org/10.1089/mdr.2017.0295. :mdr.2017.0295

Ferreira S, Silva AL, Tomás J et al (2022) Characterization of areABC, a RND-type efflux system involved in antimicrobial resistance of Aliarcobacter Butzleri. Antimicrob Agents Chemother 65:e00729–e00721. https://doi.org/10.1128/AAC.00729-21

Article  Google Scholar 

Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136. https://doi.org/10.1128/MMBR.61.2.136-169.1997

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fox EM, Raftery M, Goodchild A, Mendz GL (2007) Campylobacter jejuni response to ox-bile stress. FEMS Immunol Med Microbiol 49:165–172. https://doi.org/10.1111/J.1574-695X.2006.00190.X

Article  PubMed  CAS  Google Scholar 

Gölz G, Alter T, Bereswill S, Heimesaat MM (2016) The immunopathogenic potential of Arcobacter butzleri – lessons from a Meta-analysis of murine infection studies. PLoS ONE 11:e0159685. https://doi.org/10.1371/journal.pone.0159685

Article  PubMed  PubMed Central  CAS  Google Scholar 

Harshey RM (2003) BACTERIAL MOTILITY ON a SURFACE: many ways to a common goal. Annu Rev Microbiol 57:249–273. https://doi.org/10.1146/annurev.micro.57.030502.091014

Article  PubMed  CAS  Google Scholar 

Heimesaat MM, Karadas G, Alutis M et al (2015) Survey of small intestinal and systemic immune responses following murine Arcobacter butzleri infection. Gut Pathog 7. https://doi.org/10.1186/s13099-015-0075-z

Herold S, Paton JC, Srimanote P, Paton AW (2009) Differential effects of short-chain fatty acids and iron on expression of iha in Shiga-toxigenic Escherichia coli. Microbiol (N Y) 155:3554–3563. https://doi.org/10.1099/MIC.0.029454-0

Article  CAS  Google Scholar 

Ho HTK, Lipman LJa, Wösten MMSM et al (2008) Arcobacter spp. possess two very short flagellins of which FlaA is essential for motility. FEMS Immunol Med Microbiol 53:85–95. https://doi.org/10.1111/j.1574-695X.2008.00405.x

Article  PubMed  CAS  Google Scholar 

Ikeda T, Shinagawa T, Ito T et al (2020) Hypoosmotic stress induces flagellar biosynthesis and swimming motility in Escherichia albertii. Communications Biology 2020 3:1 3:1–7. https://doi.org/10.1038/s42003-020-0816-5

Isidro J, Ferreira S, Pinto M et al (2020) Virulence and antibiotic resistance plasticity of Arcobacter butzleri: insights on the genomic diversity of an emerging human pathogen. Infect Genet Evol 80:104213. https://doi.org/10.1016/j.meegid.2020.104213

Article  PubMed  CAS  Google Scholar 

Kamp HD, Higgins DE (2011) A protein Thermometer Controls temperature-dependent transcription of Flagellar Motility genes in Listeria monocytogenes. PLoS Pathog 7:e1002153. https://doi.org/10.1371/JOURNAL.PPAT.1002153

Article  PubMed  PubMed Central  CAS  Google Scholar 

Karadas G, Sharbati S, Hänel I et al (2013) Presence of virulence genes, adhesion and invasion of Arcobacter butzleri. J Appl Microbiol 115:583–590. https://doi.org/10.1111/jam.12245

Article  PubMed  CAS  Google Scholar 

Karadas G, Bücker R, Sharbati S et al (2016) Arcobacter butzleri isolates exhibit pathogenic potential in intestinal epithelial cell models. J Appl Microbiol 120:218–225. https://doi.org/10.1111/jam.12979

Article  PubMed  CAS  Google Scholar 

Kim JC, Yoon JW, Kim CH et al (2012) Repression of flagella motility in enterohemorrhagic Escherichia coli O157:H7 by mucin components. Biochem Biophys Res Commun 423:789–792. https://doi.org/10.1016/J.BBRC.2012.06.041

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif