In vivo manufacture and manipulation of CAR-T cells for better druggability

Abi Hussein, H., et al. (2017). Global vision of druggability issues. Drug Discovery Today, 22, 404–415. https://doi.org/10.1016/j.drudis.2016.11.021

Article  Google Scholar 

Fauman, E. B., Rai, B. K., & Huang, E. S. (2011). Structure-based druggability assessment–Identifying suitable targets for small molecule therapeutics. Current opinion in Chemical Biology, 15, 463–468. https://doi.org/10.1016/j.cbpa.2011.05.020

Article  CAS  PubMed  Google Scholar 

Owens, J. (2007). Determining druggability. Nature Reviews Drug Discovery, 6, 187. https://doi.org/10.1038/nrd2275

Article  CAS  Google Scholar 

Cheng, A. C., et al. (2007). Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology, 25, 71–75. https://doi.org/10.1038/nbt1273

Article  CAS  PubMed  Google Scholar 

Vormittag, P., Gunn, R., Ghorashian, S., & Veraitch, F. S. (2018). A guide to manufacturing CAR T cell therapies. Current Opinion in Biotechnology, 53, 164–181. https://doi.org/10.1016/j.copbio.2018.01.025

Article  CAS  PubMed  Google Scholar 

Watanabe, N., Mo, F., & McKenna, M. K. (2022). Impact of manufacturing procedures on CAR T cell functionality. Frontiers in Immunology, 13, 876339. https://doi.org/10.3389/fimmu.2022.876339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abou-El-Enein, M., et al. (2021). Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discovery, 2, 408–422. https://doi.org/10.1158/2643-3230.Bcd-21-0084

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allen, E. S., et al. (2017). Autologous lymphapheresis for the production of chimeric antigen receptor T cells. Transfusion, 57, 1133–1141. https://doi.org/10.1111/trf.14003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, W., Jiang, Z., Jiang, W., & Yang, R. (2022). Universal chimeric antigen receptor T cell therapy - The future of cell therapy: A review providing clinical evidence. Cancer Treatment and Research Communications, 33, 100638. https://doi.org/10.1016/j.ctarc.2022.100638

Article  PubMed  Google Scholar 

Torikai, H., et al. (2012). A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood, 119, 5697–5705. https://doi.org/10.1182/blood-2012-01-405365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grupp, S. A., et al. (2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine, 368, 1509–1518. https://doi.org/10.1056/NEJMoa1215134

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kochenderfer, J. N., et al. (2012). B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood, 119, 2709–2720. https://doi.org/10.1182/blood-2011-10-384388

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamers, C. H., et al. (2013). Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity. Molecular therapy : The journal of the American Society of Gene Therapy, 21, 904–912. https://doi.org/10.1038/mt.2013.17

Article  CAS  PubMed  Google Scholar 

Barrett, D. M., Teachey, D. T., & Grupp, S. A. (2014). Toxicity management for patients receiving novel T-cell engaging therapies. Current Opinion in Pediatrics, 26, 43–49. https://doi.org/10.1097/mop.0000000000000043

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniels, K. G., et al. (2022). Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning. Science (New York, N.Y.).=, 378, 1194–1200. https://doi.org/10.1126/science.abq0225

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alizadeh, D., et al. (2019). IL15 Enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunology Research, 7, 759–772. https://doi.org/10.1158/2326-6066.Cir-18-0466

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amini, L., et al. (2022). Preparing for CAR T cell therapy: Patient selection, bridging therapies and lymphodepletion. Nature Reviews. Clinical Oncology, 19, 342–355. https://doi.org/10.1038/s41571-022-00607-3

Article  PubMed  Google Scholar 

Schwartz, R. H. (2003). T cell anergy. Annual Review of Immunology, 21, 305–334. https://doi.org/10.1146/annurev.immunol.21.120601.141110

Article  CAS  PubMed  Google Scholar 

Dropulić, B. (2011). Lentiviral vectors: Their molecular design, safety, and use in laboratory and preclinical research. Human Gene Therapy, 22, 649–657. https://doi.org/10.1089/hum.2011.058

Article  CAS  PubMed  Google Scholar 

Zhou, Q., et al. (2012). T-cell receptor gene transfer exclusively to human CD8(+) cells enhances tumor cell killing. Blood, 120, 4334–4342. https://doi.org/10.1182/blood-2012-02-412973

Article  CAS  PubMed  Google Scholar 

Zhou, Q., et al. (2015). Exclusive transduction of human CD4+ T cells upon systemic delivery of CD4-targeted lentiviral vectors. Journal of immunology (Baltimore, Md. : 1950), 195, 2493–2501, https://doi.org/10.4049/jimmunol.1500956

Pfeiffer, A., et al. (2018). In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Molecular Medicine, 10. https://doi.org/10.15252/emmm.201809158

Ho, N., et al. (2022). In vivo generation of CAR T cells in the presence of human myeloid cells. Molecular therapy. Methods & Clinical Development, 26, 144–156. https://doi.org/10.1016/j.omtm.2022.06.004

Article  CAS  Google Scholar 

Moço, P. D., Aharony, N., & Kamen, A. (2020). Adeno-associated viral vectors for homology-directed generation of CAR-T cells. Biotechnology Journal, 15, e1900286. https://doi.org/10.1002/biot.201900286

Article  CAS  PubMed  Google Scholar 

Wu, Z., Asokan, A., & Samulski, R. J. (2006). Adeno-associated virus serotypes: Vector toolkit for human gene therapy. Molecular Therapy : The Journal of the American Society of Gene Therapy, 14, 316–327. https://doi.org/10.1016/j.ymthe.2006.05.009

Article  CAS  PubMed  Google Scholar 

Wang, J., et al. (2016). Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Research, 44, e30. https://doi.org/10.1093/nar/gkv1121

Article  CAS  PubMed  Google Scholar 

MacLeod, D. T., et al. (2017). Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Molecular Therapy: The Journal of the American Society of Gene Therapy, 25, 949–961. https://doi.org/10.1016/j.ymthe.2017.02.005

Article  CAS  PubMed  Google Scholar 

Dai, X., et al. (2019). One-step generation of modular CAR-T cells with AAV-Cpf1. Nature Methods, 16, 247–254. https://doi.org/10.1038/s41592-019-0329-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nawaz, W., et al. (2021). AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer Journal, 11, 119. https://doi.org/10.1038/s41408-021-00508-1

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif