Neuroprotective Effects of Inhaled Xenon Gas on Brain Structural Gray Matter Changes After Out-of-Hospital Cardiac Arrest Evaluated by Morphometric Analysis: A Substudy of the Randomized Xe-Hypotheca Trial

Kiguchi T, Okubo M, Nishiyama C, et al. Out-of-hospital cardiac arrest across the world: first report from the international liaison committee on resuscitation (ILCOR). Resuscitation. 2020;152:39–49.

Article  PubMed  Google Scholar 

Gräsner JT, Wnent J, Herlitz J, et al. Survival after out-of-hospital cardiac arrest in Europe- results of the EuReCa TWO study. Resuscitation. 2020;148:218–26.

Article  PubMed  Google Scholar 

Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication; a scientific statement from the international liaison committee on resuscitation; the American heart association emergency cardiovascular care committee; the council on cardiovascular surgery and Anesthesia; the council on cardiopulmonary, perioperative, and critical care; the council on clinical cardiology; the council on stroke. Resuscitation. 2008;79:350–79.

Article  PubMed  Google Scholar 

Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.

Article  Google Scholar 

Sandroni C, Nolan JP, Andersen LW, et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Intensive Care Med. 2022;48:261–9.

Article  PubMed  Google Scholar 

Nielsen N, Wetterslev J, Cronberg T, et al. TTM Trial investigators, targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.

Article  CAS  PubMed  Google Scholar 

Dankiewich J, Cronberg T, Lilja G, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384(24):2283–94.

Article  Google Scholar 

Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med. 2021;47(12):1393–414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franks NP, Dickinson R, De Sousa SL, Hall AC, Lieb WR. How does xenon produce anaesthesia? Nature. 1998;396(6709):324.

Article  CAS  PubMed  Google Scholar 

Wilhelm S, Ma D, Maze M, Franks NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002;96(6):1485–91.

Article  CAS  PubMed  Google Scholar 

Dinse A, Föhr KJ, Georgieff M, Beyer C, Bulling A, Weigt HU. Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones. Br J Anaesth. 2005;94(4):479–85.

Article  CAS  PubMed  Google Scholar 

Hasender R, Kratzer MS, Kochs E, Mattusch C, Eder M, Rammes G. Xenon attenuates excitatory synaptic transmission in the rodent prefrontal cortex and spinal cord dorsal horn. Anesthesiology. 2009;111:1297–307.

Article  Google Scholar 

Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010;112(3):614–22.

Article  CAS  PubMed  Google Scholar 

Thoresen M, Hobbs CE, Wood T, Chakkarapani E, Dingley J. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia. J Cereb Blood Flow. 2009;29(4):707–14.

Article  CAS  Google Scholar 

Chakkarapani E, Dingley J, Liu X, et al. Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol. 2010;68(3):330–41.

Article  PubMed  Google Scholar 

Hobbs C, Thoresen M, Tucker A, Aquilina K, Chakkarapani E, Dingley J. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke. 2008;39(4):1307–13.

Article  PubMed  Google Scholar 

Ma D, Hossain M, Chow A, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol. 2005;58(2):182–93.

Article  CAS  PubMed  Google Scholar 

Laitio R, Hynninen M, Arola O, et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest. JAMA. 2016;315(11):1120–8.

Article  CAS  PubMed  Google Scholar 

Wilde GJ, Pringle AK, Wright P, Iannotti F. Differential vulnerability of the CA1 and CA3 subfields of the hippocampus to superoxide and hydroxyl radicals in vitro. J Neurochem. 1997;69:883–6.

Article  CAS  PubMed  Google Scholar 

Einenkel A-M, Salameh A. Selective vulnerability of hippocampal CA1 and CA3 pyramidal cells: What are possible pathomechanisms and should more attention be paid to the CA3 region in future studies? J Neurosci Res. 2023;102:e25276.

Article  Google Scholar 

Wang X, Zaidi A, Pal R, et al. Genomic and biochemical approaches in the discovery of mechanisms for selective vulnerability to oxidative stress. BMC Neurosci. 2009;19(10):12.

Article  CAS  Google Scholar 

Wixted JT, Squire LR. Recall and recognition are equally impaired in patients with selective hippocampal damage. Cog, Affect, and Behav Neurosci. 2004;4(1):58–66.

Article  Google Scholar 

LaBar KS, Cabeza R. Cognitive neuroscience of emotional memory. Nature Rev Neurosci. 2006;7:54–64.

Article  CAS  Google Scholar 

Ørbo M, Vangberg TR, Tande PM, Anke A, Aslaksen PM. Memory performance, global cerebral volumes and hippocampal subfield volumes in long-term survivors of out-of-hospital cardiac Arrest. Resuscitation. 2018;126:21–8.

Article  PubMed  Google Scholar 

Stamenova V, Nicola R, Aharon-Peretz J, Goldsher D, Kapeliovich M, Gilboa A. Long term effects of brief hypoxia due to cardiac arrest: Hippocampal reductions and memory deficit. Resuscitation. 2018;126:65–71.

Article  PubMed  Google Scholar 

Silva S, Peran P, Kerhuel L, et al. Brain gray matter MRI morphometry for neuroprognostication after cardiac arrest. Critical Care Med. 2017;45(8):e763-77.

Article  Google Scholar 

Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage. 2010;53(4):1181–96.

Article  PubMed  Google Scholar 

Ashburner J, Friston KJ. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. Neuroimage. 2011;55(3):954–67.

Article  PubMed  Google Scholar 

Spisák T, Spisák Z, Zunhammer M, et al. Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power. Neuroimage. 2019;185:12–26.

Article  PubMed  Google Scholar 

Pulsinelli WA, Brierly JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982;11:491–8.

Article  CAS  PubMed  Google Scholar 

Pulsinelli WA. Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res. 1985;63:29–37.

Article  CAS  PubMed  Google Scholar 

Kurth CD, Priestley M, Golden F, McCann J, Raghupathi R. Regional patterns of neuronal death after deep hypothermic circulatory arrest in newborn pigs. J Thorac Cardiovasc Surg. 1999;118:1068–77.

Article  CAS  PubMed  Google Scholar 

Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.

Article  CAS  PubMed  Google Scholar 

Taraszewska A, Zelman IB, Ogonowska W, Chrzanowska H. The pattern of irreversible brain changes after cardiac arrest in humans. Folia Neuropathol. 2002;40:133–41.

PubMed  Google Scholar 

Ma D, Hossain M, Pettet GKJ, et al. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow. 2006;26:199–208.

Article 

Comments (0)

No login
gif