Adandonon A, Aveling TA, Van der Merwe NA, Sanders G (2005) Genetic variation among Sclerotium isolates from Benin and South Africa, determined using mycelial compatibility and ITS rDNA sequence data. Australas Plant Pathol 34:19–25
Agrios GN (2005) Plant pathology. Academic Press, New Delhi
Akram A, Amber P, Iqbal SM, Qureshi R, Javaid A, Mukhtar S (2017) RAPD based characterization of chickpea isolates of Sclerotium rolfsii. Pak J Bot 49(5):2015–2022
Almeida AMR, Abdelnoor RV, Calvo ES, Tessnman D, Yorinori JT (2001) Genotypic diversity among Brazilian isolates of Sclerotium rolfsii. J Phytopathol 149(9):493–502
Aycock R (1966) Stem rot and other diseases caused by Sclerotium rolfsii. N Carol Agric Exp Stn Tech Bull 175:1–202
Bera SK, Kasundra SV, Kamdar JH, Lal C, Thirumalasmy PP, Dash P, Maurya AK (2014) Variable response of interspecific breeding lines of groundnut to Sclerotium rolfsii infection under field and laboratory conditions. Electron J Plant Breed 5(1):22–29
Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102(4):865–880
Article CAS PubMed Google Scholar
Blanz PA, Unseld M (1987) Ribosomal RNA as a taxonomic tool in mycology. In: de Hoog GS, Smith MT, Weijman AC (eds) The expanding realm of yeast-like fungi. Elsevier, Amsterdam, pp 247–258
Bosamia TC, Dodia SM, Mishra GP, Ahmad S, Joshi B, Thirumalaisamy PP, Kumar N, Rathnakumar AL, Sangh C, Kumar A, Thankappan R (2020) Unraveling the mechanisms of resistance to Sclerotium rolfsii in peanut (Arachis hypogaea L.) using comparative RNA-Seq analysis of resistant and susceptible genotypes. PLoS ONE 15(8):e0236823
Article CAS PubMed PubMed Central Google Scholar
Brayford D (1990) Vegetative incompatibility in Phomopsis from elm. Mycol Res 94(6):745–752
Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Evol Syst 22(1):525–564
Cilliers AJ, Herselman L, Pretorius ZA (2000) Genetic variability within and among mycelial compatibility groups of Sclerotium rolfsii in South Africa. Phytopathology 90(9):1026–1031
Article CAS PubMed Google Scholar
Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1(4):233–240
Daunde AT, Apet KT, Chavan RL (2018) Analysis of genetic diversity in Sclerotium rolfsii causing collar rot of chilli by RAPD. Int J Curr Microbiol Appl Sci 7(12):91–99
Durgaprasad S, Reddy NE, Kishore C, Reddy BB, Sudhakar P, Rao SVRK (2008) Variability among the isolates of Sclerotium rolfsii (Sacc.) causing stem rot of peanut (Arachis hypogaea L.). In: The Rovira Rhizosphere Symposium p72
Estrada AER, Del Mar J-G, Royse DJ (2010) Pleurotus eryngii species complex: sequence analysis and phylogeny based on partial EF1α and RPB2 genes. Fungal Biol 114(5–6):421–428
Article CAS PubMed Google Scholar
Gawande SP, Borkar SG, Chimote VP, Sharma AK (2013) Determination of genetic diversity in Sclerotium rolfsii and Sclerotium delphinii by using RAPD and ISSR markers. Vegetos 26(2s):39–44
Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2(1):1–8
Article CAS PubMed PubMed Central Google Scholar
Harlton CE, Levesque CA, Punja ZK (1995) Genetic diversity in Sclerotium (Athelia) rolfsii and related species. Phytopathology 85(10):1269–1281
Hibbett DS (1992) Ribosomal RNA and fungal systematics. Nippon Kingakkai Kaiho 44(4):533–556
Khatri K, Kunwar S, Barocco RL, Dufault NS (2017) Monitoring fungicide sensitivity levels and mycelial compatibility groupings of Sclerotium rolfsii Isolates from Florida peanut fields. Peanut Sci 44(2):83–92
Kohn LM, Stasovski E, Carbone I, Royer J, Anderson JB (1991) Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum. Phytopathology 81(4):480–485
Koike ST, Gladders P, Paulus AO (2007) Vegetable diseases: a color handbook. Gulf Professional Publishing, Texas
Kumari A, Ghatak A (2018) Variability in chickpea rot-causing soil-borne Necrotrophs, Sclerotium rolfsii and Macrophomina phaseolina: variability in chickpea rot-causing Necrotrophs pathogens. J AgriSearch 5(4):247–253
Kuninaga S, Natsuaki T, Takeuchi T, Yokosawa R (1997) Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr Genet 32:237–243
Article CAS PubMed Google Scholar
Le CN, Mendes R, Kruijt M, Raaijmakers JM (2012) Genetic and phenotypic diversity of Sclerotium rolfsii in groundnut fields in central Vietnam. Plant Dis 96(3):389–397
Article CAS PubMed Google Scholar
Leslie JF (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31(1):127–150
Article CAS PubMed Google Scholar
Mahato A, Biswas MK, Patra S (2017) Effect of age on susceptibility of tomato plants to Sclerotium rolfsii (Sacc.) caused collar rot disease. Int J Pure Appl Biosci 5(6):1108–1112
Matheny PB (2006) PCR primers to amplify and sequence RPB2 (RNA polymerase II second largest subunit) in the Basidiomycota (Fungi). J Clin Microbiol 2:1–4
Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43(2):430–451
Article CAS PubMed Google Scholar
Mehri Z, KhodaParast SA, MosaNejad S (2013) Genetic diversity in Sclerotium rolfsii population based on mycelial compatibility groups in Guilan province, Iran. Iran J Plant Pathol 49(3):317–324
Mersha Z (2017) Southern blight—a disease becoming more prevalent in Missouri. https://ipm.missouri.edu/MEG/2017/8/southernBlight/
Nalim FA, Starr JL, Woodard KE, Segner S, Keller NP (1995) Mycelial compatibility groups in Texas peanut field populations of Sclerotium rolfsii. Phytopathology 85(12):1507–1512
Okabe I, Matsumoto N (2000) Population structure of Sclerotium rolfsii in peanut fields. Mycoscience 41(2):145–148
Okabe I, Matsumoto N (2003) Phylogenetic relationship of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii based on ITS sequences. Mycol Res 107(2):164–168
Article CAS PubMed Google Scholar
Okabe I, Morikawa C, Matsumoto N, Yokoyama K (1998) Variation in Sclerotium rolfsii isolates in Japan. Mycoscience 39(4):399–407
Parvin N, Bilkiss M, Nahar J, Siddiqua MK, Meah MB (2016) RAPD analysis of Sclerotium rolfsii isolates causing collar rot of eggplant and tomato. Int J Agril Res Innov Technol 6(1):47–57
Prasad D, Basha ST, Peddanarappa N, Reddy GE (2010) Molecular variability among the isolates of Sclerotium rolfsii causing stem rot of groundnut by RAPD, ITS-PCR and RFLP. Eur Asian J BioSci 4:80–87
Prasad SL, Sujatha K, Naresh N, Rao SC (2012) Variability in Sclerotium rolfsii associated with collar rot of sunflower. Indian Phytopathol 65(2):161–165
Punja ZK (1985) The biology, ecology, and control of Sclerotium rolfsii. Annu Rev Phytopathol 23(1):97–127
Punja ZK, Grogan RG (1983) Hyphal interactions and antagonism among field isolates and single-basidiospore strains of Athelia (Sclerotium) rolfsii. Phytopathology 73(9):1279–1284
Punja ZK, Sun LJ (2001) Genetic diversity among mycelial compatibility groups of Sclerotium rolfsii (teleomorph Athelia rolfsii) and S. delphinii. Mycol Res 105(5):537–546
Rasu T, Sevugapperumal N, Thiruvengadam R, Ramasamy S (2013) Morphological and genomic variability among Sclerotium rolfsii populations. Bioscan 8(4):1425–1430
Redhead SA, Mullineux ST (2023) Nomenclatural novelties. Index Fungorum 550:1
Remesal E, Jordan-Ramirez R, Jimenez-Diaz RM, Navas-Cortes JA (2012) Mycelial compatibility groups and pathogenic diversity in Sclerotium rolfsii populations from sugar beet crops in Mediterranean-type climate regions. Plant Pathol 61(4):739–753
Comments (0)