Schünemann, M., Anker, S.D., and Rauchhaus, M., Cancer fatigue syndrome reflects clinically non-overt heart failure: An approach towards onco-cardiology, Nat. Clin. Pract. Oncol., 2008, vol. 5, no. 11, pp. 632–633.
Hudson, M.M., Ness, K.K., Gurney, J.G., Mulrooney, D.A., Chemaitilly, W., Krull, K.R., Green, D.M., Armstrong, G.T., Nottage, K.A., Jones, K.E., Sklar, C.A., Srivastava, D.K., and Robison, L.L., Clinical ascertainment of health outcomes among adults treated for childhood cancer, J. Am. Med. Assoc., 2013, vol. 309, no. 22, pp. 2371–2381.
Chen, M.S., Lee, R.T., and Garbern, J.C., Senescence mechanisms and targets in the heart, Cardiovasc. Res., 2022, vol. 118, no. 5, pp. 1173–1187.
Article CAS PubMed Google Scholar
Mehdizadeh, M., Aguilar, M., Thorin, E., Ferbeyre, G., and Nattel, S., The role of cellular senescence in cardiac disease: Basic biology and clinical relevance, Nat. Rev. Cardiol., 2022, vol. 19, no. 4, pp. 250–264.
Vizioli, M.G., Liu, T., Miller, K.N., Robertson, N.A., Gilroy, K., Lagnado, A.B., Perez-Garcia, A., Kiourtis, C., Dasgupta, N., Lei, X., Kruger, P.J., Nixon, C., Clark, W., Jurk, D., Bird, T.G., Passos, J.F., Berger, S.L., Dou, Z., and Adams, P.D., Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence, Genes Dev., 2020, vol. 34, nos. 5–6, pp. 428–445.
Article CAS PubMed PubMed Central Google Scholar
Singh, P., Sharma, R., McElhanon, K., Allen, C.D., Megyesi, J.K., Benes, H., and Singh, S.P., Sulforaphane protects the heart from doxorubicin-induced toxicity, Free Radic. Biol. Med., 2015, vol. 86, pp. 90–101.
Article CAS PubMed PubMed Central Google Scholar
Hiensch, A.E., Bolam, K.A., Mijwel, S., Jeneson, J.A.L., Huitema, A.D.R., Kranenburg, O., van der Wall, E., Rundqvist, H., Wengstrom, Y., and May, A.M., Doxorubicin-induced skeletal muscle atrophy: Elucidating the underlying molecular pathways, Acta Physiol., 2020, vol. 229, no. 2, р. e13400.
Dugbartey, G.J., Peppone, L.J., and de Graaf, I.A.M., An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures, Toxicology, 2016, vol. 371, pp. 58–66.
Article CAS PubMed Google Scholar
Conte, E., Bresciani, E., Rizzi, L., Cappellari, O., De Luca, A., Torsello, A., and Liantonio, A., Cisplatin-induced skeletal muscle dysfunction: Mechanisms and counteracting therapeutic strategies, Int. J. Mol. Sci., 2020, vol. 21, no. 4, p. 1242.
Article CAS PubMed PubMed Central Google Scholar
Andreou, C. and Matsakas, A., Current insights into cellular senescence and myotoxicity induced by doxorubicin: The role of exercise and growth factors, Int. J. Sports Med., 2022, vol. 43, no. 13, pp. 1084–1096.
Echaniz-Laguna, A., Benoilid, A., Vinzio, S., Fornecker, L.M., Lannes, B., Goullé, J.P., Broly, F., and de Camaret, B., Mitochondrial myopathy caused by arsenic trioxide therapy, Blood, 2012, vol. 119, no. 18, pp. 4272–4274.
Article CAS PubMed Google Scholar
Yen, Y.P., Tsai, K.S., Chen, Y.W., Huang, C.F., Yang, R.S., and Liu, S.H., Arsenic inhibits myogenic differentiation and muscle regeneration, Environ. Health Perspect., 2010, vol. 118, no. 7, pp. 949–956.
Article CAS PubMed PubMed Central Google Scholar
Piegari, E., De Angelis, A., Cappetta, D., Russo, R., Esposito, G., Costantino, S., Graiani, G., Frati, C., Prezioso, L., Berrino, L., Urbanek, K., Quaini, F., and Rossi, F., Doxorubicin induces senescence and impairs function of human cardiac progenitor cells, Basic Res. Cardiol., 2013, vol. 108, no. 2, p. 334.
Demaria, M., O’Leary, M.N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A.M., Alston, S., Academia, E.C., Kilmarx, S., Valdovinos, A., Wang, B., de Bruin, A., Kennedy, B.K., Melov, S., Zhou, D., Sharpless, N.E., Muss, H., and Campisi, J., Cellular senescence promotes adverse effects of chemotherapy and cancer relapse, Cancer Discov., 2017, vol. 7, no. 2, pp. 165–176.
Article CAS PubMed Google Scholar
Wang, B., Kohli, J., and Demaria, M., Senescent cells in cancer therapy: Friends or foes?, Trends Cancer Res., 2020, vol. 6, no. 10, pp. 838–857.
Jagannathan, S., Shadle, S.C., Resnick, R., Snider, L., Tawil, R.N., van der Maarel, S.M., Bradley, R.K., and Tapscott, S.J., Model systems of DUX4 expression recapitulate the transcriptional profile of FSHD cells, Hum. Mol. Genet., 2016, vol. 25, no. 20, pp. 4419–4431.
CAS PubMed PubMed Central Google Scholar
Malavolta, M., Giacconi, R., Piacenza, F., Strizzi, S., Cardelli, M., Bigossi, G., Marcozzi, S., Tiano, L., Marcheggiani, F., Matacchione, G., Giuliani, A., Olivieri, F., Crivellari, I., Beltrami, A.P., Serra, A., Demaria, M., and Provinciali, M., Simple detection of unstained live senescent cells with imaging flow cytometry, Cells, 2022, vol. 11, no. 16, р. 2506.
Article CAS PubMed PubMed Central Google Scholar
Brookes, S., Gagrica, S., Sanij, E., Rowe, J., Gregory, F.J., Hara, E., and Peters, G., Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence, Cell Cycle, 2015, vol. 14, no. 8, pp. 1164–1173.
Article CAS PubMed PubMed Central Google Scholar
Gao, Y., Wu, T., Tang, X., Wen, J., Zhang, Y., Zhang, J., and Wang, S., Increased cellular senescence in doxorubicin-induced murine ovarian injury: Effect of senolytics, Geroscience, 2023, vol. 45, no. 3, pp. 1775–1790.
Article CAS PubMed PubMed Central Google Scholar
Efferth, T., Konkimalla, V.B., Wang, Y.F., Sauerbrey, A., Meinhardt, S., Zintl, F., Mattern, J., and Volm, M., Prediction of broad spectrum resistance of tumors towards anticancer drugs, Clin. Cancer Res., 2008, vol. 14, no. 8, pp. 2405–2412.
Article CAS PubMed Google Scholar
Jurisicova, A., Lee, H.J., D’Estaing, S.G., Tilly, J., and Perez, G.I., Molecular requirements for doxorubicin-mediated death in murine oocytes, Cell Death Differ., 2006, vol. 13, no. 9, pp. 1466–1474.
Article CAS PubMed Google Scholar
Morgan, S., Lopes, F., Gourley, C., Anderson, R.A., and Spears, N., Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin, PLoS One, 2013, vol. 8, no. 7, р. e70117.
Article ADS CAS PubMed PubMed Central Google Scholar
Gonzalez, V.M., Fuertes, M.A., Alonso, C., and Perez, J.M., Is cisplatin-induced cell death always produced by apoptosis?, Mol. Pharmacol., 2001, vol. 59, no. 4, pp. 657–663.
Article CAS PubMed Google Scholar
Frezza, M., Hindo, S., Chen, D., Davenport, A., Schmitt, S., Tomco, D., and Dou, Q.P., Novel metals and metal complexes as platforms for cancer therapy, Curr. Pharm. Des., 2010, vol. 16, no. 16, pp. 1813–1825.
Article CAS PubMed PubMed Central Google Scholar
Matsumoto, C., Sekine, H., Zhang, N., Mogami, S., Fujitsuka, N., and Takeda, H., Role of p53 in cisplatin-induced myotube atrophy, Int. J. Mol. Sci., 2023, vol. 24, no. 11, р. 9176.
Article CAS PubMed PubMed Central Google Scholar
Zhou, L., Lu, R., Huang, C., and Lin, D., Taurine protects C2C12 myoblasts from impaired cell proliferation and myotube differentiation under cisplatin-induced ROS exposure, Front. Mol. Biosci., 2021, vol. 8, р. 685362.
Article CAS PubMed PubMed Central Google Scholar
Dawood, M., Hamdoun, S., and Efferth, T., Multifactorial modes of action of arsenic trioxide in cancer cells as analyzed by classical and network pharmacology, Front. Pharmacol., 2018, vol. 9, р. 143.
Article PubMed PubMed Central Google Scholar
Sugihara, H., Teramoto, N., Yamanouchi, K., Matsuwaki, T., and Nishihara, M., Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion, Aging, 2018, vol. 10, no. 4, pp. 747–763.
Article CAS PubMed PubMed Central Google Scholar
He, Y., Xie, W., Li, H., Jin, H., Zhang, Y., and Li, Y., Cellular senescence in sarcopenia: Possible mechanisms and therapeutic potential, Front. Cell Dev. Biol., 2021, vol. 9, р. 793088.
Campisi, J., Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors, Cell, 2005, vol. 120, no. 4, pp. 513–522.
Comments (0)