United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Ageing 2019: Highlights (ST/ESA/SER.A/430).
Blinkouskaya, Y., Caçoilo, A., Gollamudi, T., Jalalian, S., and Weickenmeier, J., Brain aging mechanisms with mechanical manifestations, Mech. Ageing Dev., 2021, vol. 200, p. 111575.https://doi.org/10.1016/j.mad.2021.111575
Harada, C.N., Natelson Love, M.C., and Triebel, K.L., Normal cognitive aging, Clin. Geriatr. Med., 2013, vol. 29, no. 4, pp. 737–752.https://doi.org/10.1016/j.cger.2013.07.002
Salthouse, T.A., Trajectories of normal cognitive aging, Psychol. Aging, 2019, vol. 34, no. 1, pp. 17–24. https://doi.org/10.1037/pag0000288
MacDonald M.E. and Pike, G.B., MRI of healthy brain aging: A review, NMR Biomed., 2021, vol. 34, no. 9, p. e4564. https://doi.org/10.1002/nbm.4564
Bethlehem, R.A.I., Seidlitz, J., White, S.R., et al., Brain charts for the human lifespan, Nature, 2022, vol. 604, no. 7906, pp. 525–533. https://doi.org/10.1038/s41586-022-04554-y
Article CAS PubMed Google Scholar
von Bartheld, C.S., Myths and truths about the cellular composition of the human brain: A review of influential concepts, J. Chem. Neuroanat., 2018, vol. 93, pp. 2–15. https://doi.org/10.1016/j.jchemneu.2017.08.004
Article CAS PubMed Google Scholar
Fjell, A.M. and Walhovd, K.B., Structural brain changes in aging: Courses, causes and cognitive consequences, Rev. Neurosci., 2010, vol. 21, no. 3, pp. 187–221. https://doi.org/10.1515/revneuro.2010.21.3.187
Dickstein, D.L., Weaver, C.M., Luebke, J.I., and Hof, P.R., Dendritic spine changes associated with normal aging, Neuroscience, 2013, vol. 251, pp. 21–32.https://doi.org/10.1016/j.neuroscience.2012.09.077
Article CAS PubMed Google Scholar
Clarke, L.E., Liddelow, S.A., Chakraborty, C., Münch, A.E., Heiman, M., and Barres, B.A., Normal aging induces A1-like astrocyte reactivity, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 8, pp. E1896–E1905. https://doi.org/10.1073/pnas.1800165115
Article ADS CAS PubMed PubMed Central Google Scholar
Harrison, I.F., Ismail, O., Machhada, A., Colgan, N., Ohene, Y., Nahavandi, P., Ahmed, Z., Fisher, A., Meftah, S., Murray, T.K., Ottersen, O.P., Nagelhus, E.A., O’Neill, M.J., Wells, J.A., and Lythgoe, M.F., Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model, Brain, 2020, vol. 143, no. 8, pp. 2576–2593. https://doi.org/10.1093/brain/awaa179
Article PubMed PubMed Central Google Scholar
Knopman, D.S., Lundt, E.S., Therneau, T.M., Albertson, S.M., Gunter, J.L., Senjem, M.L., Schwarz, C.G., Mielke, M.M., Machulda, M.M., Boeve, B.F., Jones, D.T., Graff-Radford, J., Vemuri, P., Kantarci, K., Lowe, V.J., Petersen, R.C., and Jack, C.R., Jr., Alzheimer’s disease neuroimaging initiative. Association of initial β-amyloid levels with subsequent flortaucipir positron emission tomography changes in persons without cognitive impairment, JAMA Neurol., 2021, vol. 78, no. 2, pp. 217–228. https://doi.org/10.1001/jamaneurol.2020.3921
Allen, J.S., Bruss, J., Brown, C.K., and Damasio, H., Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region, Neurobiol. Aging, 2005, vol. 26, no. 9, pp. 1245–1260; discussion 1279–1282. https://doi.org/10.1016/j.neurobiolaging.2005.05.023
Schilling, K.G., Archer, D., Yeh, F.C., Rheault, F., Cai, L.Y., Hansen, C., Yang, Q., Ramdass, K., Shafer, A.T., Resnick, S.M., Pechman, K.R., Gifford, K.A., Hohman, T.J., Jefferson, A., Anderson, A.W., Kang, H., and Landman, B.A., Aging and white matter microstructure and macrostructure: A longitudinal multi-site diffusion MRI study of 1218 participants, Brain Struct. Funct., 2022, vol. 227, no. 6, pp. 2111–2125. https://doi.org/10.1007/s00429-022-02503-z
Article PubMed PubMed Central Google Scholar
Salat, D.H., Greve, D.N., Pacheco, J.L., Quinn, B.T., Helmer, K.G., Buckner, R.L., and Fischl, B., Regional white matter volume differences in nondemented aging and Alzheimer’s disease, Neuroimage, 2009, vol. 44, no. 4, pp. 1247–1258. https://doi.org/10.1016/j.neuroimage.2008.10.030
Wardlaw, J.M., Valdés Hernández, M.C., and Muñoz-Maniega, S., What are white matter hyperintensities made of? Relevance to vascular cognitive impairment, J. Am. Heart Assoc., 2015, vol. 4, no. 6, p. 001140. https://doi.org/10.1161/JAHA.114.001140
Pantoni, L., Fierini, F., and Poggesi, A., LADIS Study Group, Impact of cerebral white matter changes on functionality in older adults: An overview of the LADIS Study results and future directions, Geriatr. Gerontol. Int., 2015, vol. 15, suppl. 1, pp. 10–16. https://doi.org/10.1111/ggi.12665
Linortner, P., McDaniel, C., Shahid, M., Levine, T.F., Tian, L., Cholerton, B., and Poston, K.L., White matter hyperintensities related to Parkinson’s disease executive function, Mov. Disord. Clin. Pract., 2020, vol. 7, no. 6, pp. 629–638. https://doi.org/10.1002/mdc3.12956
Article PubMed PubMed Central Google Scholar
Gogoleva, A.G. and Zakharov, V.V., The etiology, manifestations, and therapy of chronic cerebrovascular diseases, in Nevrologiya, neiropsikhiatriya, psikhosomatika, 2020, vol. 12, no. 5, pp. 84–91. https://doi.org/10.14412/2074-2711-2020-5-84-91
Garnier-Crussard, A., Bougacha, S., Wirth, M., André, C., Delarue, M., Landeau, B., Mézenge, F., Kuhn, E., Gonneaud, J., Chocat, A., Quillard, A., Ferrand-Devouge, E., de La Sayette, V., Vivien, D., Krolak-Salmon, P., and Chételat, G., White matter hyperintensities across the adult lifespan: Relation to age, Aβ load, and cognition, Alzheimers Res. Ther., 2020, vol. 12, no. 1, p. 127. https://doi.org/10.1186/s13195-020-00669-4
Article CAS PubMed PubMed Central Google Scholar
Ogama, N., Sakurai, T., Nakai, T., Niida, S., Saji, N., Toba, K., Umegaki, H., and Kuzuya, M., Impact of frontal white matter hyperintensity on instrumental activities of daily living in elderly women with Alzheimer disease and amnestic mild cognitive impairment, PLoS One, 2017, vol. 12, no. 3, p. e0172484. https://doi.org/10.1371/journal.pone.0172484
Article CAS PubMed PubMed Central Google Scholar
Rizvi, B., Lao, P.J., Chesebro, A.G., Dworkin, J.D., Amarante, E., Beato, J.M., Gutierrez, J., Zahodne, L.B., Schupf, N., Manly, J.J., Mayeux, R., and Brickman, A.M., Association of regional white matter hyperintensities with longitudinal Alzheimer-like pattern of neurodegeneration in older adults, JAMA Network Open, 2021, vol. 4, no. 10, p. e2125166. https://doi.org/10.1001/jamanetworkopen.2021.25166
Article PubMed PubMed Central Google Scholar
Al-Hazzouri, Z.A. and Yaffe, K., Arterial stiffness and cognitive function in the elderly, J. Alzheimers Dis., 2014, vol. 42, suppl. 4, no. 4, p. S503–S514. https://doi.org/10.3233/JAD-141563
Drapkina, O.M. and Fadeeva, M.V., Arterial aging as a cardiovascular risk factor, Arterial’naya gipertenziya, 2014, vol. 20, no. 4, pp. 224–231. https://doi.org/10.18705/1607-419X-2014-20-4-224-231
Liu, Q., Fang, J., Cui, C., Dong, S., Gao, L., Bao, J., Li, Y., Ma, M., Chen, N., and He, L., Association of aortic stiffness and cognitive decline: A systematic review and meta-analysis, Front. Aging Neurosci., 2021, vol. 13, p. 680205. https://doi.org/10.3389/fnagi.2021.680205
Article PubMed PubMed Central Google Scholar
Martinez-Ramirez, S., Greenberg, S.M., and Viswanathan, A., Cerebral microbleeds: Overview and implications in cognitive impairment, Alzheimers Res. Ther., 2014, vol. 6, no. 3, p. 33. https://doi.org/10.1186/alzrt263
Article PubMed PubMed Central Google Scholar
Tsubota-Utsugi, M., Satoh, M., Tomita, N., Hara, A., Kondo, T., Hosaka, M., Saito, S., Asayama, K., Inoue, R., Hirano, M., Hosokawa, A., Murakami, K., Murakami, T., Metoki, H., Kikuya, M., Izumi, S.I., Imai, Y., and Ohkubo, T., Lacunar infarcts rather than white matter hyperintensity as a predictor of future higher level functional decline: The Ohasama study, J. Stroke Cerebrovasc. Dis., 2017, vol. 26, no. 2, pp. 376–384. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.036
Wrigglesworth, J., Ward, P., Harding, I.H., Nilaweera, D., Wu, Z., Woods, R.L., and Ryan, J., Factors associated with brain ageing—a systematic review, BMC Neurol., 2021, vol. 21, no. 1, p. 312. https://doi.org/10.1186/s12883-021-02331-4
Article PubMed PubMed Central Google Scholar
Bogolepova, A.N., Vasenina, E.E., Gomzyakova, N.A., et al., Clinical guidelines for cognitive disorders in elderly and older patients, Zh. Nevr. Psikhiatr. im. S.S. Korsakova, 2021, vol. 121, nos. 10-3, pp. 6–137.
Azam, S., Haque, M.E., Balakrishnan, R., Kim, I.S., and Choi, D.K., The ageing brain: Molecular and cellular basis of neurodegeneration, Front. Cell Dev. Biol., 2021, vol. 9, p. 683459. https://doi.org/10.3389/fcell.2021.683459
Article PubMed PubMed Central Google Scholar
de Godoy, L.L., Alves, C.A.P.F., Saavedra, J.S.M., Studart-Neto, A., Nitrini, R., da Costa Leite, C., and Bisdas, S., Understanding brain resilience in superagers: A systematic review, Neuroradiology, 2021, vol. 63, no. 5, pp. 663–683. https://doi.org/10.1007/s00234-020-02562-1
Comments (0)