Age-Related Changes and Loss of Damage Resistance of Kidney Tissue: The Role of a Decrease in the Number of Kidney Resident Progenitor Cells

Ferenbach, D.A. and Bonventre, J.V., Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD, Nat. Rev. Nephrol., 2015, vol. 11, no. 5, pp. 264–276.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gros, J. et al., A common somitic origin for embryonic muscle progenitors and satellite cells, Nature, 2005, vol. 435, no. 7044, pp. 954–958.

Article  CAS  PubMed  Google Scholar 

Apple, D.M., Solano-Fonseca, R., and Kokovay, E., Neurogenesis in the aging brain, Biochem. Pharmacol., 2017, vol. 141, pp. 77–85.

Article  CAS  PubMed  Google Scholar 

Jasper, H., Intestinal stem cell aging: Origins and interventions, Annu. Rev. Physiol., 2020, vol. 82, pp. 203–226.

Article  CAS  PubMed  Google Scholar 

Nyengaard, J.R. and Bendtsen, T.F., Glomerular number and size in relation to age, kidney weight, and body surface in normal man, Anat. Rec., 1992, vol. 232, no. 2, pp. 194–201.

Article  CAS  PubMed  Google Scholar 

Rule, A.D. et al., The association between age and nephrosclerosis on renal biopsy among healthy adults, Ann. Intern. Med., 2010, vol. 152, no. 9, pp. 561–567.

Article  PubMed  PubMed Central  Google Scholar 

Rule, A.D., Cornell, L.D., and Poggio, E.D., Senile nephrosclerosis—does it explain the decline in glomerular filtration rate with aging?, Nephron Physiol., 2011, vol. 119, Suppl. 1, pp. 6–11.

Wang, X., Bonventre, J.V., and Parrish, A.R., The aging kidney: Increased susceptibility to nephrotoxicity, Int. J. Mol. Sci., 2014, vol. 15, no. 9, pp. 15358–15376.

Article  PubMed  PubMed Central  Google Scholar 

Yang, H. and Fogo, A.B., Cell senescence in the aging kidney, J. Am. Soc. Nephrol., 2010, vol. 21, no. 9, pp. 1436–1439.

Article  PubMed  Google Scholar 

Braun, H. et al., Cellular senescence limits regenerative capacity and allograft survival, J. Am. Soc. Nephrol., 2012, vol. 23, no. 9, pp. 1467–1473.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, L. et al., Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury, Nat. Med., 2010, vol. 16, no. 5, pp. 535–543.

van Deursen, J.M., The role of senescent cells in ageing, Nature, 2014, vol. 509, no. 7501, pp. 439–446.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang, D.H. et al., Impaired angiogenesis in the aging kidney: Vascular endothelial growth factor and thrombospondin-1 in renal disease, Am. J. Kidney Dis., 2001, vol. 37, no. 3, pp. 601–611.

Article  CAS  PubMed  Google Scholar 

Ruiz-Torres, M.P. et al., Age-related increase in expression of TGF-β1 in the rat kidney: Relationship to morphologic changes, J. Am. Soc. Nephrol., 1998, vol. 9, no. 5, pp. 782–791.

Article  CAS  PubMed  Google Scholar 

Thakar, C.V., et al., Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia, J. Clin. Invest., 2005, vol. 115, no. 12, pp. 3451–3459.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liguori, I. et al., Oxidative stress, aging, and diseases, Clin. Interv. Aging, 2018, vol. 13, pp. 757–772.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Locatelli, F. et al., Oxidative stress in end-stage renal disease: An emerging threat to patient outcome, Nephrol. Dial. Transplant., 2003, vol. 18, no. 7, pp. 1272–1280.

Article  CAS  PubMed  Google Scholar 

Birben, E. et al., Oxidative stress and antioxidant defense, World Allergy Organ. J., 2012, vol. 5, no. 1, pp. 9–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Himmelfarb, J., Relevance of oxidative pathways in the pathophysiology of chronic kidney disease, Cardiol. Clin., 2005, vol. 23, no. 3, pp. 319–330.

Article  PubMed  Google Scholar 

Nistala, R., Whaley-Connell, A., and Sowers, J.R., Redox control of renal function and hypertension, Antioxid. Redox Signal., 2008, vol. 10, no. 12, pp. 2047–2089.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tbahriti, H.F. et al., Effect of different stages of chronic kidney disease and renal replacement therapies on oxidant–antioxidant balance in uremic patients, Biochem. Res. Int., 2013, vol. 2013, p. 358985.

Article  PubMed  PubMed Central  Google Scholar 

Jankauskas, S.S. et al., The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy, Sci. Rep., 2017, vol. 7, p. 44430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choksi, K.B. et al. Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes, Free Radic. Biol. Med., 2007, vol. 43, no. 10, pp. 1423–1438.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiao, X. et al., Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury, J. Gerontol. A Biol. Sci. Med. Sci., 2005, vol. 60, no. 7, pp. 830–839.

Article  PubMed  Google Scholar 

Serviddio, G. et al., Bioenergetics in aging: Mitochondrial proton leak in aging rat liver, kidney and heart, Redox Rep., 2007, vol. 12, no. 1, pp. 91–95.

Article  CAS  PubMed  Google Scholar 

Ferrucci, L. and Fabbri, E., Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty, Nat. Rev. Cardiol., 2018, vol. 15, no. 9, pp. 505–522.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shlipak, M.G. et al., Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency, Circulation, 2003, vol. 107, no. 1, pp. 87–92.

Article  CAS  PubMed  Google Scholar 

Kolios, G. and Moodley, Y., Introduction to stem cells and regenerative medicine, Respiration, 2013, vol. 85, no. 1, pp. 3–10.

Article  PubMed  Google Scholar 

Ferraro, F., Celso, C.L., and Scadden, D., Adult stem cells and their niches, Adv. Exp. Med. Biol., 2010, vol. 695, pp. 155–168.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrianova, N.V. et al., Kidney cells regeneration: Dedifferentiation of tubular epithelium, resident stem cells and possible niches for renal progenitors, Int. J. Mol. Sci., 2019, vol. 20, no. 24, 6326.

Oliver, J.A. et al., The renal papilla is a niche for adult kidney stem cells, J. Clin. Invest., 2004, vol. 114, no. 6, pp. 795–804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patschan, D. et al., Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia, Kidney Int., 2007, vol. 71, no. 8, pp. 744–754.

Article  CAS  PubMed  Google Scholar 

Mohyeldin, A., Garzón-Muvdi, T., and Quiñones-Hinojosa, A., Oxygen in stem cell biology: A critical component of the stem cell niche, Cell Stem Cell, 2010, vol. 7, no. 2, pp. 150–161.

Article  CAS  PubMed  Google Scholar 

Pannabecker, T.L. and Layton, A.T., Targeted delivery of solutes and oxygen in the renal medulla: Role of microvessel architecture, Am. J. Physiol. Renal Physiol., 2014, vol. 307, no. 6, pp. F649–F655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huling, J. and Yoo, J.J., Comparing adult renal stem cell identification, characterization and applications, J. Biomed. Sci., 2017, vol. 24, no. 1, p. 32.

Article  PubMed  PubMed Central  Google Scholar 

Grange, C. et al., Protective effect and localization by optical imaging of human renal CD133+ progenitor cells in an acute kidney injury model, Physiol. Rep., 2014, vol. 2, no. 5, р. e12009.

Smeets, B. et al., Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration, J. Pathol., 2013, vol. 229, no. 5, pp. 645–659.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta, S. et al., Isolation and characterization of kidney-derived stem cells, J. Am. Soc. Nephrol., 2006, vol. 17, no. 11, pp. 3028–3040.

Article  CAS  PubMed  Google Scholar 

Kitamura, S., Sakurai, H., and Makino, H., Single adult kidney stem/progenitor cells reconstitute three-dimensional nephron structures in vitro, Stem Cells, 2015, vol. 33, no. 3, pp. 774–784.

Article  CAS  PubMed  Google Scholar 

Abedin, M.J. et al., Identification and characterization of Sall1-expressing cells present in the adult mouse kidney, Nephron Exp. Nephrol., 2011, vol. 119, no. 4, pp. e75–e82.

Lazzeri, E. et al., Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury, Nat. Commun., 2018, vol. 9, no. 1, p. 1344.

Article 

Comments (0)

No login
gif