Favoriti, P., Carbone, G., Greco, M., Pirozzi, F., Pirozzi, R. E. M., & Corcione, F. (2016). Worldwide burden of colorectal cancer: A review. Updates in surgery, 68(1), 7–11. https://doi.org/10.1007/s13304-016-0359-yPMID-27067591
Araghi, M., Soerjomataram, I., Jenkins, M., Brierley, J., Morris, E., Bray, F., & Arnold, M. (2019). Global trends in colorectal cancer mortality: Projections to the year 2035. International Journal of Cancer, 144(12), 2992–3000. https://doi.org/10.1002/ijc.32055PMID-30536395
Article CAS PubMed Google Scholar
Center, M. M., Jemal, A., Smith, R. A., & Ward, E. (2009). Worldwide variations in colorectal cancer. CA: A Cancer Journal for Clinicians, 59(6), 366–378. https://doi.org/10.3322/caac.20038
WHO. (2023, 11 July). Colorectal cancer. World Heath Organisation. Retrieved September 14, 2023 from https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer#:~:text=The%20risk%20of%20colorectal%20cancer,early%20stages%20of%20the%20disease
Munro, M. J., Wickremesekera, S. K., Peng, L., Tan, S. T., & Itinteang, T. (2018). Cancer stem cells in colorectal cancer: A review. Journal of Clinical Pathology, 71(2), 110. https://doi.org/10.1136/jclinpath-2017-204739PMID-28942428
Article CAS PubMed Google Scholar
Riihimäki, M., Hemminki, A., Sundquist, J., & Hemminki, K. (2016). Patterns of metastasis in colon and rectal cancer. Scientific Reports, 6(1), 29765. https://doi.org/10.1038/srep29765PMID-27416752
Article PubMed PubMed Central ADS Google Scholar
Lintoiu-Ursut, B., Tulin, A., & Constantinoiu, S. (2015). Recurrence after hepatic resection in colorectal cancer liver metastasis - Review article. Journal of Medicine & Life, 8(Special Issue 1), 12–14.
Massagué, J., & Ganesh, K. (2021). Metastasis-initiating cells and ecosystems. Cancer Discovery, 11(4), 971–994. https://doi.org/10.1158/2159-8290.Cd-21-0010
Article PubMed PubMed Central Google Scholar
Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78. https://doi.org/10.1016/j.stem.2018.11.011
Article CAS PubMed Google Scholar
Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Publishing Group, 23(10), 1124–1134. https://doi.org/10.1038/nm.4409
Merlos-Suarez, A., Barriga, F. M., Jung, P., Iglesias, M., Cespedes, M. V., Rossell, D., Sevillano, M., Hernando-Momblona, X., Silva-Diz, V. D., Munoz, P., Clevers, H., Sancho, E., Mangues, R., & Batlle, E. (2011). The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Stem Cell, 8(5), 511–524. https://doi.org/10.1016/j.stem.2011.02.020
Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P. J., & Clevers, H. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007. https://doi.org/10.1038/nature06196
Article CAS PubMed ADS Google Scholar
de Sousa e Melo, F., & de Sauvage, F. J. (2019). Cellular plasticity in intestinal homeostasis and disease. Cell stem cell, 24(1), 54–64. https://doi.org/10.1016/j.stem.2018.11.019
Article CAS PubMed Google Scholar
Davidson, L. A., Goldsby, J. S., Callaway, E. S., Shah, M. S., Barker, N., & Chapkin, R. S. (2012). Alteration of colonic stem cell gene signatures during the regenerative response to injury. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1822(10), 1600–1607. https://doi.org/10.1016/j.bbadis.2012.06.011
Article CAS PubMed Google Scholar
Planutis, A. K., Holcombe, R. F., Planoutene, M. V., & Planoutis, K. S. (2015). SW480 colorectal cancer cells that naturally express Lgr5 are more sensitive to the most common chemotherapeutic agents than Lgr5-negative SW480 cells. Anti-Cancer Drugs, 26(9), 942–947. https://doi.org/10.1097/cad.0000000000000270PMID-26196680
Article CAS PubMed Google Scholar
Metcalfe, C., Kljavin, N. M., Ybarra, R., & Sauvage, F. J. D. (2013). Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell stem cell, 14(2), 149–159. https://doi.org/10.1016/j.stem.2013.11.008PMID-24332836
Asfaha, S., Hayakawa, Y., Muley, A., Stokes, S., Graham, T. A., Ericksen, R. E., Westphalen, C. B., Burstin, J. V., Mastracci, T. L., Worthley, D. L., Guha, C., Quante, M., Rustgi, A. K., & Wang, T. C. (2015). Krt19(+)/Lgr5(-) cells are radioresistant cancer-initiating stem cells in the colon and intestine. Cell stem cell, 16(6), 627–638. https://doi.org/10.1016/j.stem.2015.04.013
Article CAS PubMed PubMed Central Google Scholar
Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T., & Sato, T. (2017). Visualization and targeting of LGR5+ human colon cancer stem cells. Nature, 545(7653), 187–192. https://doi.org/10.1038/nature22081
Article CAS PubMed ADS Google Scholar
Tetteh, P. W., Basak, O., Farin, H. F., Wiebrands, K., Kretzschmar, K., Begthel, H., van den Born, M., Korving, J., de Sauvage, F., van Es, J. H., van Oudenaarden, A., & Clevers, H. (2016). Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell, 18(2), 203–213. https://doi.org/10.1016/j.stem.2016.01.001
Article CAS PubMed Google Scholar
Fumagalli, A., Oost, K. C., Kester, L., Morgner, J., Bornes, L., Bruens, L., Spaargaren, L., Azkanaz, M., Schelfhorst, T., Beerling, E., Heinz, M. C., Postrach, D., Seinstra, D., Sieuwerts, A. M., Martens, J. W. M., van der Elst, S., van Baalen, M., Bhowmick, D., Vrisekoop, N., … van Rheenen, J. (2020). Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell, 26(4), 569-578.e567. https://doi.org/10.1016/j.stem.2020.02.008
Article CAS PubMed PubMed Central Google Scholar
Ayyaz, A., Kumar, S., Sangiorgi, B., Ghoshal, B., Gosio, J., Ouladan, S., Fink, M., Barutcu, S., Trcka, D., Shen, J., Chan, K., Wrana, J. L., & Gregorieff, A. (2019). Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature Publishing Group, 569(7754), 1–26. https://doi.org/10.1038/s41586-019-1154-y
Huels, D. J., & Sansom, O. J. (2015). Stem vs non-stem cell origin of colorectal cancer. British Journal of Cancer, 113(1), 1–5. https://doi.org/10.1038/bjc.2015.214
Article CAS PubMed PubMed Central Google Scholar
Hirata, A., Hatano, Y., Niwa, M., Hara, A., & Tomita, H. (2019). Heterogeneity in colorectal cancer stem cells. Cancer Prevention Research, 12(7), 413–420. https://doi.org/10.1158/1940-6207.capr-18-0482
Article CAS PubMed Google Scholar
Engel, R. M., Chan, W. H., Nickless, D., Hlavca, S., Richards, E., Kerr, G., Oliva, K., McMurrick, P. J., Jardé, T., & Abud, H. E. (2020). Patient-derived colorectal cancer organoids upregulate revival stem cell marker genes following chemotherapeutic treatment. Journal of clinical medicine, 9(1), 128. https://doi.org/10.3390/jcm9010128
Article CAS PubMed PubMed Central Google Scholar
Flanagan, L., Whyte, L., Chatterjee, N., & Tenniswood, M. (2010). Effects of clusterin over-expression on metastatic progression and therapy in breast cancer. BMC Cancer, 10(1), 107. https://doi.org/10.1186/1471-2407-10-107
Article CAS PubMed PubMed Central Google Scholar
García-Aranda, M., Téllez, T., Muñoz, M., & Redondo, M. (2017). Clusterin inhibition mediates sensitivity to chemotherapy and radiotherapy in human cancer. Anti-Cancer Drugs, 28(7), 702–716. https://doi.org/10.1097/cad.0000000000000507
Mazzarelli, P., Pucci, S., & Spagnoli, L. G. (2009). CLU and colon cancer. The dual face of CLU. In Clusterun, Part A (Vol. 104, pp. 45–61). Elsevier Science and Technology. https://doi.org/10.1016/S0065-230X(09)05003-9
Shapiro, B., Tocci, P., Haase, G., Gavert, N., & Ben-Ze’ev, A. (2015). Clusterin, a gene enriched in intestinal stem cells, is required for L1-mediated colon cancer metastasis. Oncotarget, 6(33), 34389–34401. https://doi.org/10.18632/oncotarget.5360
Article PubMed PubMed Central Google Scholar
Hogg, S. D., & Embery, G. (1979). The isolation and partial characterization of a sulphated glycoprotein from human whole saliva which aggregates strains of Streptococcus sanguis but not Streptococcus mutans. Archives of Oral Biology, 24(10–11), 791–797. https://doi.org/10.1016/0003-9969(79)90040-2
Article CAS PubMed Google Scholar
Rohne, P., Prochnow, H., & Koch-Brandt, C. (2016). The CLU-files: Disentanglement of a mystery. Biomolecular Concepts, 7(1), 1–15. https://doi.org/10.1515/bmc-2015-0026PMID-26673020
Article CAS PubMed Google Scholar
Fritz, I. B., Burdzy, K., Sétchell, B., & Blaschuk, O. (1983). Ram rete testis fluid contains a protein (clusterin) which influences cell-cell interactions in vitro. Biology of Reproduction, 28(5), 1173–1188. https://doi.org/10.1095/biolreprod28.5.1173
Article CAS PubMed Google Scholar
de Silva, H. V., Harmony, J. A., Stuart, W. D., Gil, C. M., & Robbins, J. (1990). Apolipoprotein J: Structure and tissue distribution. Biochemistry, 29(22), 5380–5389. https://doi.org/10.1021/bi00474a025
French, L. E., Sappino, A. P., Tschopp, J., & Schifferli, J. A. (1992). Distinct sites of production and deposition of the putative cell death marker clusterin in the human thymus. Journal of Clinical Investigation, 90(5), 1919–1925. https://doi.org/10.1172/jci116069
Article CAS PubMed PubMed Central Google Scholar
Fink, T. M., Zimmer, M., Tschopp, J., Etienne, J., Jenne, D. E., & Lichter, P. (1993). Human clusterin (CLI) maps to 8p21 in proximity to the lipoprotein lipase (LPL) gene. Genomics, 16(2), 526–52
Comments (0)