The Role of Serum Monocytes and Tissue Macrophages in Driving Left Ventricular Systolic Dysfunction and Cardiac Inflammation Following Subarachnoid Hemorrhage

Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J. Brain-heart interaction: cardiac complications after stroke. Circ Res. 2017;121(4):451–68. https://doi.org/10.1161/CIRCRESAHA.117.311170.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byer E, Ashman R, Toth LA. Electrocardiograms with large, upright T waves and long Q-T intervals. Am Heart J. 1947;33(6):796–806. https://doi.org/10.1016/0002-8703(47)90025-2.

Article  CAS  PubMed  Google Scholar 

Burch GE, Meyers R, Abildskov JA. A new electrocardiographic pattern observed in cerebrovascular accidents. Circulation. 1954;9(5):719–23. https://doi.org/10.1161/01.cir.9.5.719.

Article  CAS  PubMed  Google Scholar 

Britz GW, Meno JR, Park IS, et al. Time-dependent alterations in functional and pharmacological arteriolar reactivity after subarachnoid hemorrhage. Stroke. 2007;38(4):1329–35. https://doi.org/10.1161/01.STR.0000259853.43084.03.

Article  PubMed  Google Scholar 

Solenski NJ, Haley EC Jr, Kassell NF, et al. Medical complications of aneurysmal subarachnoid hemorrhage a report of the multicenter, cooperative aneurysm study. participants of the multicenter cooperative aneurysm study. Crit Care Med. 1995;23(6):1007–17. https://doi.org/10.1097/00003246-199506000-00004.

Article  CAS  PubMed  Google Scholar 

Lantigua H, Ortega-Gutierrez S, Schmidt JM, et al. Subarachnoid hemorrhage: who dies, and why? Crit Care. 2015;19(1):309. https://doi.org/10.1186/s13054-015-1036-0.

Article  PubMed  PubMed Central  Google Scholar 

Banki N, Kopelnik A, Tung P, et al. Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. J Neurosurg. 2006;105(1):15–20. https://doi.org/10.3171/jns.2006.105.1.15.

Article  PubMed  Google Scholar 

Murthy SB, Shah S, Rao CP, Bershad EM, Suarez JI. Neurogenic Stunned Myocardium Following Acute Subarachnoid Hemorrhage: Pathophysiology and Practical Considerations. J Intensive Care Med. 2015;30(6):318–25. https://doi.org/10.1177/0885066613511054.

Article  PubMed  Google Scholar 

Frontera JA, Parra A, Shimbo D, et al. Cardiac arrhythmias after subarachnoid hemorrhage: risk factors and impact on outcome. Cerebrovasc Dis. 2008;26(1):71–8. https://doi.org/10.1159/000135711.

Article  PubMed  PubMed Central  Google Scholar 

Tung P, Kopelnik A, Banki N, et al. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke. 2004;35(2):548–51. https://doi.org/10.1161/01.STR.0000114874.96688.54.

Article  PubMed  Google Scholar 

Geraghty JR, Cheng T, Hirsch Y, Saini NS, Nazir NT, Testai FD. Elevated serum leukocytes are predictive of cardiac injury following aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2022;31(5):106423. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106423.

Article  PubMed  Google Scholar 

Okabe T, Kanzaria M, Rincon F, Kraft WK. Cardiovascular protection to improve clinical outcomes after subarachnoid hemorrhage: is there a proven role? Neurocrit Care. 2013;18(2):271–84. https://doi.org/10.1007/s12028-012-9804-z.

Article  CAS  PubMed  Google Scholar 

Pollick C, Cujec B, Parker S, Tator C. Left ventricular wall motion abnormalities in subarachnoid hemorrhage: an echocardiographic study. J Am Coll Cardiol. 1988;12(3):600–5. https://doi.org/10.1016/s0735-1097(88)80044-5.

Article  CAS  PubMed  Google Scholar 

Temes RE, Tessitore E, Schmidt JM, et al. Left ventricular dysfunction and cerebral infarction from vasospasm after subarachnoid hemorrhage. Neurocrit Care. 2010;13(3):359–65. https://doi.org/10.1007/s12028-010-9447-x.

Article  PubMed  Google Scholar 

Jyotsna M, Prasad V, Indrani G, Trikamji BV. Importance of detection of segmental wall motion abnormalities of left ventricle in nontraumatic subarachnoid hemorrhage: a prospective study. Echocardiography. 2010;27(5):496–500. https://doi.org/10.1111/j.1540-8175.2009.01080.x.

Article  PubMed  Google Scholar 

Papanikolaou J, Makris D, Karakitsos D, et al. Cardiac and central vascular functional alterations in the acute phase of aneurysmal subarachnoid hemorrhage. Crit Care Med. 2012;40(1):223–32. https://doi.org/10.1097/CCM.0b013e31822e9fab.

Article  PubMed  Google Scholar 

Sandvei MS, Amundsen BH, Haugen BO, Stoylen A, Slordahl SA, Vik A. Left ventricular myocardial function during the acute phase of a subarachnoid haemorrhage. Scand Cardiovasc J. 2009;43(2):110–6. https://doi.org/10.1080/14017430802398116.

Article  CAS  PubMed  Google Scholar 

Kothavale A, Banki NM, Kopelnik A, et al. Predictors of left ventricular regional wall motion abnormalities after subarachnoid hemorrhage. Neurocrit Care. 2006;4(3):199–205. https://doi.org/10.1385/NCC:4:3:199.

Article  PubMed  Google Scholar 

Zaroff JG, Rordorf GA, Titus JS, et al. Regional myocardial perfusion after experimental subarachnoid hemorrhage. Stroke. 2000;31(5):1136–43. https://doi.org/10.1161/01.str.31.5.1136.

Article  CAS  PubMed  Google Scholar 

Munakata M, Kanazawa H, Kimura K, Arai T, Sukegawa H, Fukuda K. Assessment of cardiac function in rat endovascular perforation model of subarachnoid hemorrhage; A model of subarachnoid hemorrhage-induced cardiac dysfunction. Front Synaptic Neurosci. 2022;14:919998. https://doi.org/10.3389/fnsyn.2022.919998.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geraghty JR, Testai FD. Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep. 2017;19(12):50. https://doi.org/10.1007/s11883-017-0690-x.

Article  CAS  PubMed  Google Scholar 

Zou L, Han R. Inflammatory response and immune regulation in brain-heart interaction after stroke. Cardiovasc Ther. 2022;2022:2406122. https://doi.org/10.1155/2022/2406122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banki NM, Kopelnik A, Dae MW, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation. 2005;112(21):3314–9. https://doi.org/10.1161/CIRCULATIONAHA.105.558239.

Article  PubMed  Google Scholar 

Masuda T, Sato K, Yamamoto S, et al. Sympathetic nervous activity and myocardial damage immediately after subarachnoid hemorrhage in a unique animal model. Stroke. 2002;33(6):1671–6. https://doi.org/10.1161/01.str.0000016327.74392.02.

Article  PubMed  Google Scholar 

Stephens R, Grainger JR, Smith CJ, Allan SM. Systemic innate myeloid responses to acute ischaemic and haemorrhagic stroke. Semin Immunopathol. 2022. https://doi.org/10.1007/s00281-022-00968-y.

Article  PubMed  PubMed Central  Google Scholar 

Geraghty JR, Davis JL, Testai FD. Neuroinflammation and microvascular dysfunction after experimental subarachnoid hemorrhage: emerging components of early brain injury related to outcome. Neurocrit Care. 2019;31(2):373–89. https://doi.org/10.1007/s12028-019-00710-x.

Article  PubMed  PubMed Central  Google Scholar 

Geraghty JR, Lung TJ, Hirsch Y, et al. Systemic immune-inflammation index predicts delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2021;89(6):1071–9. https://doi.org/10.1093/neuros/nyab354.

Article  PubMed  PubMed Central  Google Scholar 

Cuoco JA, Guilliams EL, Klein BJ, et al. Monocyte count on admission is predictive of shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. Front Surg. 2022;9:879050. https://doi.org/10.3389/fsurg.2022.879050.

Article  PubMed  PubMed Central  Google Scholar 

Jackson CM, Choi J, Routkevitch D, et al. PD-1+ Monocytes mediate cerebral vasospasm following subarachnoid hemorrhage. Neurosurgery. 2021;88(4):855–63. https://doi.org/10.1093/neuros/nyaa495.

Article  PubMed  Google Scholar 

Mohme M, Sauvigny T, Mader MM, et al. Immune characterization in aneurysmal subarachnoid hemorrhage reveals distinct monocytic activation and chemokine patterns. Transl Stroke Res. 2020;11(6):1348–61. https://doi.org/10.1007/s12975-019-00764-1.

Article  CAS  PubMed  Google Scholar 

Gusdon AM, Savarraj JPJ, Shihabeddin E, et al. Time course of peripheral leukocytosis and clinical outcomes after aneurysmal subarachnoid hemorrhage. Front Neurol. 2021;12:694996. https://doi.org/10.3389/fneur.2021.694996.

Article  PubMed  PubMed Central  Google Scholar 

Unda SR, Birnbaum J, Labagnara K, Wong M, Vaishnav DP, Altschul DJ. Peripheral monocytosis at admission to predict cerebral infarct and poor functional outcomes in subarachnoid hemorrhage patients. World Neurosurg. 2020;138:e523–9. https://doi.org/10.1016/j.wneu.2020.02.170.

Article  PubMed  Google Scholar 

Feghali J, Kim J, Gami A, et al. Monocyte-based inflammatory indices predict outcomes following aneurysmal subarachnoid hemorrhage. Neurosurg Rev. 2021;44(6):3499–507. https://doi.org/10.1007/s10143-021-01525-1.

Article  PubMed  Google Scholar 

Xu HL, Pelligrino DA, Paisansathan C, Testai FD. Protective role of fingolimod (FTY720) in rats subjected to subarachnoid hemorrhage. J Neuroinflammation. 2015;12:16. https://doi.org/10.1186/s12974-015-0234-7.

Article  CAS 

Comments (0)

No login
gif