3D Enhancer–promoter networks provide predictive features for gene expression and coregulation in early embryonic lineages

Alberio, R. Regulation of cell fate decisions in early mammalian embryos. Annu. Rev. Anim. Biosci. 8, 377–393, https://doi.org/10.1146/annurev-animal-021419-083841 (2020).

Article  PubMed  Google Scholar 

Bardot, E. S. & Hadjantonakis, A. K. Mouse gastrulation: coordination of tissue patterning, specification and diversification of cell fate. Mech. Dev. 163, 103617, https://doi.org/10.1016/j.mod.2020.103617 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossant, J. Making the mouse blastocyst: past, present, and future. Curr. Top. Dev. Biol. 117, 275–288, https://doi.org/10.1016/bs.ctdb.2015.11.015 (2016).

Article  PubMed  Google Scholar 

Rossant, J. & Tam, P. P. L. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713, https://doi.org/10.1242/dev.017178 (2009).

Article  CAS  PubMed  Google Scholar 

Grabarek, J. B. et al. Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development 139, 129–39 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui, W. & Mager, J. Transcriptional regulation and genes involved in first lineage specification during preimplantation development. Adv. Anat. Embryol. Cell Biol. 229, 31–46, https://doi.org/10.1007/978-3-319-63187-5_4 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Frum, T. & Ralston, A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet. 31, 402–410, https://doi.org/10.1016/j.tig.2015.04.002 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz-Descalzo, S., Hadjantonakis, A. K. & Arias, A. M. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin. Cell Dev. Biol. 47, 101–109 (2015).

Article  PubMed  Google Scholar 

Lim, B. & Levine, M. S. Enhancer–promoter communication: hubs or loops? Curr. Opin. Genet. Dev. 67, 5–9 (2021).

Article  CAS  PubMed  Google Scholar 

Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455, https://doi.org/10.1038/s41576-019-0128-0 (2019).

Article  CAS  PubMed  Google Scholar 

Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 110, 21931–21936 (2010).

Article  Google Scholar 

Wu, J. et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256–260 (2018).

Article  CAS  PubMed  Google Scholar 

Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

Article  CAS  PubMed  Google Scholar 

Roadmap Epigenomics Consortium, et al.Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330, https://doi.org/10.1038/nature14248 (2015).

Article  CAS  PubMed Central  Google Scholar 

Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364, https://doi.org/10.1038/nature13992 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077, https://doi.org/10.1126/science.1232542 (2013).

Article  CAS  PubMed  Google Scholar 

Lopes, R., Korkmaz, G. & Agami, R. Applying CRISPR-Cas9 tools to identify and characterize transcriptional enhancers. Nat. Rev. Mol. Cell Biol. 17, 597–604, https://doi.org/10.1038/nrm.2016.79 (2016).

Article  CAS  PubMed  Google Scholar 

Apostolou, E. et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12, 699–712, https://doi.org/10.1016/j.stem.2013.04.013 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beagan, J. A. et al. Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18, 611–624, https://doi.org/10.1016/j.stem.2016.04.004 (2016).

Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226, https://doi.org/10.1038/nature23884 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13, 602–616, https://doi.org/10.1016/j.stem.2013.08.013 (2013).

Article  CAS  PubMed  Google Scholar 

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380, https://doi.org/10.1038/nature11082 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Giammartino, D. C. & Apostolou, E. The chromatin signature of pluripotency: establishment and maintenance. Curr. Stem Cell Rep. 2, 255–262, https://doi.org/10.1007/s40778-016-0055-3 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762–775, https://doi.org/10.1016/j.stem.2014.05.017 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160, https://doi.org/10.1038/s41588-018-0161-5 (2018).

Article  CAS  PubMed  Google Scholar 

Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524, https://doi.org/10.1038/nature21411 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387, https://doi.org/10.1016/j.cell.2014.09.030 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98, https://doi.org/10.1016/j.cell.2011.12.014 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, F. et al. Promoter–enhancer communication occurs primarily within insulated neighborhoods. Mol. Cell 73, 250–263.e5, https://doi.org/10.1016/j.molcel.2018.10.039 (2019).

Article  CAS  PubMed  Google Scholar 

Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Downes, D. J. et al. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale. Nat. Commun. 12, 531, https://doi.org/10.1038/s41467-020-20809-6 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212, https://doi.org/10.1038/ng.2871 (2014).

Article  CAS  PubMed  Google Scholar 

Hsieh, T. H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553.e8, https://doi.org/10.1016/j.molcel.2020.03.002 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7, https://doi.org/10.1016/j.molcel.2020.03.003 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crispatzu, G. et al. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat. Commun. 12, 4344, https://doi.org/10.1038/s41467-021-24641-4 (2021).

Article 

Comments (0)

No login
gif