Alberio, R. Regulation of cell fate decisions in early mammalian embryos. Annu. Rev. Anim. Biosci. 8, 377–393, https://doi.org/10.1146/annurev-animal-021419-083841 (2020).
Bardot, E. S. & Hadjantonakis, A. K. Mouse gastrulation: coordination of tissue patterning, specification and diversification of cell fate. Mech. Dev. 163, 103617, https://doi.org/10.1016/j.mod.2020.103617 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rossant, J. Making the mouse blastocyst: past, present, and future. Curr. Top. Dev. Biol. 117, 275–288, https://doi.org/10.1016/bs.ctdb.2015.11.015 (2016).
Rossant, J. & Tam, P. P. L. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713, https://doi.org/10.1242/dev.017178 (2009).
Article CAS PubMed Google Scholar
Grabarek, J. B. et al. Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development 139, 129–39 (2012).
Article CAS PubMed PubMed Central Google Scholar
Cui, W. & Mager, J. Transcriptional regulation and genes involved in first lineage specification during preimplantation development. Adv. Anat. Embryol. Cell Biol. 229, 31–46, https://doi.org/10.1007/978-3-319-63187-5_4 (2018).
Article PubMed PubMed Central Google Scholar
Frum, T. & Ralston, A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet. 31, 402–410, https://doi.org/10.1016/j.tig.2015.04.002 (2015).
Article CAS PubMed PubMed Central Google Scholar
Muñoz-Descalzo, S., Hadjantonakis, A. K. & Arias, A. M. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin. Cell Dev. Biol. 47, 101–109 (2015).
Lim, B. & Levine, M. S. Enhancer–promoter communication: hubs or loops? Curr. Opin. Genet. Dev. 67, 5–9 (2021).
Article CAS PubMed Google Scholar
Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455, https://doi.org/10.1038/s41576-019-0128-0 (2019).
Article CAS PubMed Google Scholar
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 110, 21931–21936 (2010).
Wu, J. et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256–260 (2018).
Article CAS PubMed Google Scholar
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).
Article CAS PubMed Google Scholar
Roadmap Epigenomics Consortium, et al.Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330, https://doi.org/10.1038/nature14248 (2015).
Article CAS PubMed Central Google Scholar
Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364, https://doi.org/10.1038/nature13992 (2014).
Article CAS PubMed PubMed Central Google Scholar
Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077, https://doi.org/10.1126/science.1232542 (2013).
Article CAS PubMed Google Scholar
Lopes, R., Korkmaz, G. & Agami, R. Applying CRISPR-Cas9 tools to identify and characterize transcriptional enhancers. Nat. Rev. Mol. Cell Biol. 17, 597–604, https://doi.org/10.1038/nrm.2016.79 (2016).
Article CAS PubMed Google Scholar
Apostolou, E. et al. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell Stem Cell 12, 699–712, https://doi.org/10.1016/j.stem.2013.04.013 (2013).
Article CAS PubMed PubMed Central Google Scholar
Beagan, J. A. et al. Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18, 611–624, https://doi.org/10.1016/j.stem.2016.04.004 (2016).
Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226, https://doi.org/10.1038/nature23884 (2017).
Article CAS PubMed PubMed Central Google Scholar
Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13, 602–616, https://doi.org/10.1016/j.stem.2013.08.013 (2013).
Article CAS PubMed Google Scholar
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380, https://doi.org/10.1038/nature11082 (2012).
Article CAS PubMed PubMed Central Google Scholar
Di Giammartino, D. C. & Apostolou, E. The chromatin signature of pluripotency: establishment and maintenance. Curr. Stem Cell Rep. 2, 255–262, https://doi.org/10.1007/s40778-016-0055-3 (2016).
Article PubMed PubMed Central Google Scholar
Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762–775, https://doi.org/10.1016/j.stem.2014.05.017 (2014).
Article CAS PubMed PubMed Central Google Scholar
Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160, https://doi.org/10.1038/s41588-018-0161-5 (2018).
Article CAS PubMed Google Scholar
Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524, https://doi.org/10.1038/nature21411 (2017).
Article CAS PubMed PubMed Central Google Scholar
Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387, https://doi.org/10.1016/j.cell.2014.09.030 (2014).
Article CAS PubMed PubMed Central Google Scholar
Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98, https://doi.org/10.1016/j.cell.2011.12.014 (2012).
Article CAS PubMed PubMed Central Google Scholar
Sun, F. et al. Promoter–enhancer communication occurs primarily within insulated neighborhoods. Mol. Cell 73, 250–263.e5, https://doi.org/10.1016/j.molcel.2018.10.039 (2019).
Article CAS PubMed Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
Article CAS PubMed PubMed Central Google Scholar
Downes, D. J. et al. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale. Nat. Commun. 12, 531, https://doi.org/10.1038/s41467-020-20809-6 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212, https://doi.org/10.1038/ng.2871 (2014).
Article CAS PubMed Google Scholar
Hsieh, T. H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553.e8, https://doi.org/10.1016/j.molcel.2020.03.002 (2020).
Article CAS PubMed PubMed Central Google Scholar
Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7, https://doi.org/10.1016/j.molcel.2020.03.003 (2020).
Article CAS PubMed PubMed Central Google Scholar
Crispatzu, G. et al. The chromatin, topological and regulatory properties of pluripotency-associated poised enhancers are conserved in vivo. Nat. Commun. 12, 4344, https://doi.org/10.1038/s41467-021-24641-4 (2021).
Comments (0)