Purinergic signaling in the battlefield of viral infections

Lohmann K (1929) über die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17(31):1. https://doi.org/10.1007/BF01506215

Article  Google Scholar 

Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40(4):668–688. https://doi.org/10.1111/j.1476-5381.1970.tb10646.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(3):509–581 https://www.ncbi.nlm.nih.gov/pubmed/4404211

CAS  PubMed  Google Scholar 

Coutinho-Silva R, Savio LEB (2021) Purinergic signalling in host innate immune defence against intracellular pathogens. Biochem Pharmacol 187:114405. https://doi.org/10.1016/j.bcp.2021.114405

Article  CAS  PubMed  Google Scholar 

Mut-Arbona P, Sperlagh B (2023) P2 receptor-mediated signaling in the physiological and pathological brain: from development to aging and disease. Neuropharmacology 233:109541. https://doi.org/10.1016/j.neuropharm.2023.109541

Article  CAS  PubMed  Google Scholar 

Giuliani AL, Sarti AC, Di Virgilio F (2019) Extracellular nucleotides and nucleosides as signalling molecules. Immunol Lett 205:16–24. https://doi.org/10.1016/j.imlet.2018.11.006

Article  CAS  PubMed  Google Scholar 

He Z, Zhao Y, Rau MJ, Fitzpatrick JAJ, Sah R, Hu H, Yuan P (2023) Structural and functional analysis of human pannexin 2 channel. Nat Commun 14(1):1712. https://doi.org/10.1038/s41467-023-37413-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95(26):15735–15740. https://doi.org/10.1073/pnas.95.26.15735

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dosch M, Gerber J, Jebbawi F, Beldi G (2018) Mechanisms of ATP release by inflammatory cells. Int J Mol Sci 19(4). https://doi.org/10.3390/ijms19041222

Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8(3):359–373. https://doi.org/10.1007/s11302-012-9304-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spari D, Beldi G (2020) Extracellular ATP as an inter-kingdom signaling molecule: release mechanisms by bacteria and its implication on the host. Int J Mol Sci 21(15). https://doi.org/10.3390/ijms21155590

Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kugelgen I, Li B, Miras-Portugal MT, Novak I, Schoneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Muller CE (2020) Update of P2Y receptor pharmacology: IUPHAR review 27. Br J Pharmacol 177(11):2413–2433. https://doi.org/10.1111/bph.15005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Illes P, Muller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F (2021) Update of P2X receptor properties and their pharmacology: IUPHAR review 30. Br J Pharmacol 178(3):489–514. https://doi.org/10.1111/bph.15299

Article  CAS  PubMed  Google Scholar 

Fredholm BB, AP IJ, Jacobson KA, Linden J, Muller CE (2011) International union of basic and clinical pharmacology. LXXXI Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 63(1):1–34. https://doi.org/10.1124/pr.110.003285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savio LEB, Coutinho-Silva R (2019) Immunomodulatory effects of P2X7 receptor in intracellular parasite infections. Curr Opin Pharmacol 47:53–58. https://doi.org/10.1016/j.coph.2019.02.005

Article  CAS  PubMed  Google Scholar 

Alves VS, da Silva JP, Rodrigues FC, Araujo SMB, Gouvea AL, Leite-Aguiar R, Santos S, da Silva MSP, Ferreira FS, Marques EP, Dos Passos B, Maron-Gutierrez T, Kurtenbach E, da Costa R, Figueiredo CP, Wyse ATS, Coutinho-Silva R, Savio LEB (2023) P2X7 receptor contributes to long-term neuroinflammation and cognitive impairment in sepsis-surviving mice. Front Pharmacol 14:1179723. https://doi.org/10.3389/fphar.2023.1179723

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Z (2021) Purinergic interplay between erythrocytes and platelets in diabetes-associated vascular dysfunction. Purinergic Signal 17(4):705–712. https://doi.org/10.1007/s11302-021-09807-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Querio G, Antoniotti S, Geddo F, Levi R, Gallo MP (2022) Trimethylamine N-oxide (TMAO) impairs purinergic induced intracellular calcium increase and nitric oxide release in endothelial cells. Int J Mol Sci 23(7). https://doi.org/10.3390/ijms23073982

Chen YH, Hsueh KK, Chu PW, Chen SK (2022) AMP-activated protein kinase mediates lipopolysaccharide-induced proinflammatory responses and elevated bone resorption in differentiated osteoclasts. J Cell Biochem 123(2):275–288. https://doi.org/10.1002/jcb.30165

Article  CAS  PubMed  Google Scholar 

Borges PA, Waclawiak I, Georgii JL, Fraga-Junior VDS, Barros JF, Lemos FS, Russo-Abrahao T, Saraiva EM, Takiya CM, Coutinho-Silva R, Penido C, Mermelstein C, Meyer-Fernandes JR, Canto FB, Neves JS, Melo PA, Canetti C, Benjamim CF (2021) Adenosine diphosphate improves wound healing in diabetic mice through P2Y(12) receptor activation. Front Immunol 12:651740. https://doi.org/10.3389/fimmu.2021.651740

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP (2022) Purinergic modulation of the immune response to infections. Purinergic Signal 18(1):93–113. https://doi.org/10.1007/s11302-021-09838-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann H (2021) History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 187:114322. https://doi.org/10.1016/j.bcp.2020.114322

Article  CAS  PubMed  Google Scholar 

Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694. https://doi.org/10.1016/j.bbamcr.2008.01.024

Article  CAS  PubMed  Google Scholar 

Dahlquist R, Diamant B (1970) Further observations on ATP-induced histamine release from rat mast cells. Acta Pharmacol Toxicol (Copenh) 28(1):43 https://www.ncbi.nlm.nih.gov/pubmed/4103483

CAS  PubMed  Google Scholar 

Kobayashi D, Umemoto E, Miyasaka M (2023) The role of extracellular ATP in homeostatic immune cell migration. Curr Opin Pharmacol 68:102331. https://doi.org/10.1016/j.coph.2022.102331

Article  CAS  PubMed  Google Scholar 

Ren W, Rubini P, Tang Y, Engel T, Illes P (2021) Inherent P2X7 receptors regulate macrophage functions during inflammatory diseases. Int J Mol Sci 23(1). https://doi.org/10.3390/ijms23010232

Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic Signal 10(4):529–564. https://doi.org/10.1007/s11302-014-9427-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee AH, Ledderose C, Li X, Slubowski CJ, Sueyoshi K, Staudenmaier L, Bao Y, Zhang J, Junger WG (2018) Adenosine triphosphate release is required for toll-like receptor-induced monocyte/macrophage activation, inflammasome signaling, interleukin-1beta production, and the host immune response to infection. Crit Care Med 46(12):e1183–e1189. https://doi.org/10.1097/CCM.0000000000003446

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen HB, Briggs KT, Marino JP, Ravid K, Robson SC, Mosser DM (2013) TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood 122(11):1935–1945. https://doi.org/10.1182/blood-2013-04-496216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Virgilio F, Sarti AC, Coutinho-Silva R (2020) Purinergic signaling, DAMPs, and inflammation. Am J Physiol Cell Physiol 318(5):C832–C835. https://doi.org/10.1152/ajpcell.00053.2020

Article  CAS  PubMed  Google Scholar 

North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. https://doi.org/10.1152/physrev.00015.2002

Article  CAS  PubMed  Google Scholar 

Habermacher C, Dunning K, Chataigneau T, Grutter T (2016) Molecular structure and function of P2X receptors. Neuropharmacology 104:18–30. https://doi.org/10.1016/j.neuropharm.2015.07.032

Article  CAS  PubMed  Google Scholar 

von Kugelgen I (2021) Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 187:114361. https://doi.org/10.1016/j.bcp.2020.114361

Article  CAS  Google Scholar 

Franceschini A, Capece M, Chiozzi P, Falzoni S, Sanz JM, Sarti AC, Bonora M, Pinton P, Di Virgilio F (2015) The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J 29(6):2450–2461. https://doi.org/10.1096/fj.14-268714

Article  CAS  PubMed  Google Scholar 

Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282(5):2871–2879. https://doi.org/10.1074/jbc.M608083200

Article 

Comments (0)

No login
gif