Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu S-G, Huang C (2021) From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 6:162
Article PubMed PubMed Central CAS Google Scholar
Burnstock G (2018) Purine and purinergic receptors. Brain Neurosci Adv 2:2398212818817494
Article PubMed PubMed Central Google Scholar
Sarikaya E (2019) Functions of purinergic receptors. In Receptors P1 and P2 as targets for drug therapy in humans, IntechOpen: 2019
da Silva Ferreira NC, Alves LA, Soares-Bezerra RJ (2019) Potential therapeutic applications of P2 receptor antagonists: from bench to clinical trials. Curr Drug Targets 20:919–937
Maynard JP, Sfanos KS (2022) P2 purinergic receptor dysregulation in urologic disease. Purinergic Signal 18:267–287
Article PubMed PubMed Central CAS Google Scholar
Draganov D, Han Z, Rana A, Bennett N, Irvine DJ, Lee PP (2021) Ivermectin converts cold tumors hot and synergizes with immune checkpoint blockade for treatment of breast cancer. NPJ Breast Cancer 7:22
Article PubMed PubMed Central CAS Google Scholar
Douguet L, dit Hreich SJ, Benzaquen J, Seguin L, Juhel T, Dezitter X, Duranton C, Ryffel B, Kanellopoulos J, Delarasse C (2021) A small-molecule P2RX7 activator promotes anti-tumor immune responses and sensitizes lung tumor to immunotherapy. Nat Comm 12:653
Campos-Contreras ADR, Díaz-Muñoz M, Vázquez-Cuevas FG (2020) Purinergic signaling in the hallmarks of cancer. Cells 9:1612
Article PubMed PubMed Central CAS Google Scholar
Zhu X, Li Q, Song W, Peng X, Zhao R (2021) P2X7 receptor: a critical regulator and potential target for breast cancer. J Mol Med 99:349–358
Article PubMed CAS Google Scholar
Xia J, Yu X, Tang L, Li G, He T (2015) P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 34:103–110
Article PubMed CAS Google Scholar
Maynard JP, Lu J, Vidal I, Hicks J, Mummert L, Ali T, Kempski R, Carter AM, Sosa RY, Peiffer LB (2022) P2X4 purinergic receptors offer a therapeutic target for aggressive prostate cancer. J Pathol 256:149–163
Article PubMed CAS Google Scholar
Qiao C, Tang Y, Li Q, Zhu X, Peng X, Zhao R (2022) ATP-gated P2X7 receptor as a potential target for prostate cancer. Hum Cell 35:1346–1354
Article PubMed CAS Google Scholar
Li Q, Zhu X, Song W, Peng X, Zhao R (2020) The P2X7 purinergic receptor: a potential therapeutic target for lung cancer. J Cancer Res Clin Oncol 146:2731–2741
Article PubMed CAS Google Scholar
Placet M, Arguin G, Molle CM, Babeu J-P, Jones C, Carrier JC, Robaye B, Geha S, Boudreau F, Gendron F-P (2018) The G protein-coupled P2Y6 receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1864:1539–1551
Hu L-P, Zhang X-X, Jiang S-H, Tao L-Y, Li Q, Zhu L-L, Yang M-W, Huo Y-M, Jiang Y-S, Tian G-A (2019) Targeting purinergic receptor P2Y2 prevents the growth of pancreatic ductal adenocarcinoma by inhibiting cancer cell glycolysis. Clin Cancer Res 25:1318–1330
Article PubMed CAS Google Scholar
Maynard JP, Lee J-S, Sohn BH, Yu X, Lopez-Terrada D, Finegold MJ, Goss JA, Thevananther S (2015) P2X3 purinergic receptor overexpression is associated with poor recurrence-free survival in hepatocellular carcinoma patients. Oncotarget 6:41162
Article PubMed PubMed Central Google Scholar
Liu Z, Liu Y, Xu L, An H, Chang Y, Yang Y, Zhang W, Xu J (2015) P2X7 receptor predicts postoperative cancer-specific survival of patients with clear-cell renal cell carcinoma. Cancer Sci 106:1224–1231
Article PubMed PubMed Central CAS Google Scholar
Ledderose S, Rodler S, Eismann L, Ledderose G, Rudelius M, Junger WG, Ledderose C (2023) P2X1 and P2X7 receptor overexpression is a negative predictor of survival in muscle-invasive bladder cancer. Cancers 15:2321
Article PubMed PubMed Central CAS Google Scholar
Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509:310–317
Article PubMed PubMed Central CAS Google Scholar
White N, Burnstock G (2006) P2 receptors and cancer. Trends Pharmacol Sci 27:211–217
Article PubMed CAS Google Scholar
Mühleder S, Fuchs C, Basílio J, Szwarc D, Pill K, Labuda K, Slezak P, Siehs C, Pröll J, Priglinger E (2020) Purinergic P2Y 2 receptors modulate endothelial sprouting. Cell Mol Life Sci 77:885–901
Rayah A, Kanellopoulos JM, Di Virgilio F (2012) P2 receptors and immunity. Microbes Infect 14:1254–1262
Article PubMed PubMed Central CAS Google Scholar
Cao Y, Chen E, Wang X, Song J, Zhang H, Chen X (2023) An emerging master inducer and regulator for epithelial-mesenchymal transition and tumor metastasis: extracellular and intracellular ATP and its molecular functions and therapeutic potential. Cancer Cell Int 23:1–16
Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30:R921–R925
Article PubMed PubMed Central CAS Google Scholar
Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 18:601–618
de Visser KE, Joyce JA (2023) The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41:374–403
Denk D, Greten FR (2022) Inflammation: the incubator of the tumor microenvironment. Trends Cancer 8:901
Article PubMed CAS Google Scholar
Canli Ö, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O, Pesic M, Neumann T, Horst D, Löwer M, Sahin U (2017) Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32(869–883):e865
Jacob F, Novo CP, Bachert C, Van Crombruggen K (2013) Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 9:285–306
Article PubMed PubMed Central CAS Google Scholar
Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192
Article PubMed CAS Google Scholar
Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286
Article PubMed PubMed Central CAS Google Scholar
Hernandez C, Huebener P, Schwabe RF (2016) Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 35:5931–5941
Article PubMed PubMed Central CAS Google Scholar
Murao A, Aziz M, Wang H, Brenner M, Wang P (2021) Release mechanisms of major DAMPs. Apoptosis 26:152–162
Comments (0)