Tanaka M, Miyajima A (2016) Liver regeneration and fibrosis after inflammation. Inflamm Regen 36:19. https://doi.org/10.1186/s41232-016-0025-2
Article PubMed PubMed Central CAS Google Scholar
Han H, Desert R, Das S et al (2020) Danger signals in liver injury and restoration of homeostasis. J Hepatol 73:933–951. https://doi.org/10.1016/j.jhep.2020.04.033
Article PubMed PubMed Central CAS Google Scholar
Zhou Z, Xu M-J, Gao B (2016) Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 13:301–315. https://doi.org/10.1038/cmi.2015.97
Article PubMed CAS Google Scholar
Jain S, Jacobson KA (2021) Purinergic signaling in liver pathophysiology. Front Endocrinol (Lausanne) 12:718429. https://doi.org/10.3389/fendo.2021.718429
Karanjia RN, Crossey MME, Cox IJ et al (2016) Hepatic steatosis and fibrosis: non-invasive assessment. World J Gastroenterol 22:9880–9897. https://doi.org/10.3748/wjg.v22.i45.9880
Article PubMed PubMed Central CAS Google Scholar
Dubuquoy L (2016) Lipocalin 2 highlights the complex role of neutrophils in alcoholic liver disease. J Hepatol 64:770–772. https://doi.org/10.1016/J.JHEP.2016.01.020
Article PubMed CAS Google Scholar
Iracheta-Vellve A, Petrasek J, Satishchandran A et al (2015) Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J Hepatol 63:1147–1155. https://doi.org/10.1016/J.JHEP.2015.06.013
Article PubMed PubMed Central CAS Google Scholar
Lemasters JJ, Zhong Z (2018) Mitophagy in hepatocytes: types, initiators and role in adaptive ethanol metabolism. Liver Res 2:125–132. https://doi.org/10.1016/J.LIVRES.2018.09.005
Article PubMed PubMed Central Google Scholar
Mridha AR, Haczeyni F, Yeh MM et al (2017) TLR9 is up-regulated in human and murine NASH: pivotal role in inflammatory recruitment and cell survival. Clin Sci 131:2145–2159. https://doi.org/10.1042/CS20160838
Roh YS, Kim JW, Park S et al (2018) Toll-like receptor-7 signaling promotes nonalcoholic steatohepatitis by inhibiting regulatory T cells in mice. Am J Pathol 188:2574–2588. https://doi.org/10.1016/J.AJPATH.2018.07.011
Article PubMed CAS Google Scholar
van Koppen A, Verschuren L, van den Hoek AM et al (2018) Uncovering a predictive molecular signature for the onset of NASH-related fibrosis in a translational NASH mouse model. Cell Mol Gastroenterol Hepatol 5:83-98.e10. https://doi.org/10.1016/J.JCMGH.2017.10.001
Ioannou GN, Van Rooyen DM, Savard C et al (2015) Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J Lipid Res 56:277–285. https://doi.org/10.1194/JLR.M053785
Article PubMed PubMed Central CAS Google Scholar
Chalasani N, Abdelmalek MF, Garcia-Tsao G et al (2020) Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology 158:1334-1345.e5. https://doi.org/10.1053/J.GASTRO.2019.11.296
Article PubMed CAS Google Scholar
He Q, Fu Y, Ding X et al (2018) High-mobility group box 1 induces endoplasmic reticulum stress and activates hepatic stellate cells. Lab Invest 98:1200–1210. https://doi.org/10.1038/S41374-018-0085-9
Article PubMed CAS Google Scholar
Yu Z, Jv Y, Cai L et al (2019) Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicol Appl Pharmacol 371:63–73. https://doi.org/10.1016/J.TAAP.2019.03.028
Article PubMed CAS Google Scholar
Toki Y, Takenouchi T, Harada H et al (2015) Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochem Biophys Res Commun 458:771–776. https://doi.org/10.1016/J.BBRC.2015.02.011
Article PubMed CAS Google Scholar
Inagaki Y, Okazaki I (2007) Emerging insights into transforming growth factor β Smad signal in hepatic fibrogenesis. Gut 56:284–292
Article PubMed PubMed Central CAS Google Scholar
Higashi T, Friedman SL, Hoshida Y (2017) Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 121:27–42
Article PubMed PubMed Central CAS Google Scholar
Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61:1066–1079. https://doi.org/10.1002/hep.27332
Wang S, Gao S, Li Y et al (2021) Emerging importance of chemokine receptor CXCR4 and its ligand in liver disease. Front Cell Dev Biol 9:716842. https://doi.org/10.3389/fcell.2021.716842
Article PubMed PubMed Central Google Scholar
Tacke F, Zimmermann HW (2014) Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 60:1090–1096. https://doi.org/10.1016/j.jhep.2013.12.025
Article PubMed CAS Google Scholar
Bartlett PJ, Gaspers LD, Pierobon N, Thomas AP (2014) Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium 55:306–316. https://doi.org/10.1016/j.ceca.2014.02.007
Article PubMed CAS Google Scholar
Gaspers LD, Bartlett PJ, Politi A et al (2014) Hormone-induced calcium oscillations depend on cross-coupling with inositol 1,4,5-trisphosphate oscillations. Cell Rep 9:1209–1218. https://doi.org/10.1016/j.celrep.2014.10.033
Article PubMed PubMed Central CAS Google Scholar
Hajnóczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424. https://doi.org/10.1016/0092-8674(95)90430-1
Amaya MJ, Nathanson MH (2013) Calcium signaling in the liver. Compr Physiol 3:515–539. https://doi.org/10.1002/cphy.c120013
Article PubMed PubMed Central Google Scholar
Gaspers LD, Pierobon N, Thomas AP (2019) Intercellular calcium waves integrate hormonal control of glucose output in the intact liver. J Physiol 597:2867–2885. https://doi.org/10.1113/JP277650
Article PubMed CAS Google Scholar
Oliva-Vilarnau N, Hankeova S, Vorrink SU et al (2018) Calcium signaling in liver injury and regeneration. Front Med (Lausanne) 5:192. https://doi.org/10.3389/fmed.2018.00192
Fustin J-M, Doi M, Yamada H et al (2012) Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep 1:341–349. https://doi.org/10.1016/j.celrep.2012.03.001
Article PubMed CAS Google Scholar
North RA (2016) P2X receptors. Philos Trans R Soc Lond B Biol Sci 371(1700):20150427. https://doi.org/10.1098/rstb.2015.0427
Comments (0)