Salari N, Ghasemi H, Fatahian R, Mansouri K, Dokaneheifard S, Shiri MH, Hemmati M, Mohammadi M (2023) The global prevalence of primary central nervous system tumors: a systematic review and meta-analysis. Eur J Med Res 28(1):39. https://doi.org/10.1186/s40001-023-01011-y
Article PubMed PubMed Central Google Scholar
World Health Organization (2020) Brain, central nervous system. IOP Publishing PhysicsWeb.https://gco.iarc.fr/today/data/factsheets/cancers/31-Brain-central-nervous-system-fact-sheet.pdf. Accessed 26 June 2023
Ostrom QT, Francis SS, Barnholtz-Sloan JS (2021) Epidemiology of brain and other CNS tumors. Curr Neurol Neurosci Rep 21(12):68. https://doi.org/10.1007/s11910-021-01152-9
Article PubMed PubMed Central Google Scholar
Oyefiade A, Paltin I, De Luca CR, Hardy KK, Grosshans DR, Chintagumpala M, Mabbott DJ, Kahalley LS (2021) Cognitive risk in survivors of pediatric brain tumors. J Clin Oncol 39(16):1718–1726. https://doi.org/10.1200/JCO.20.02338
Article CAS PubMed PubMed Central Google Scholar
Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors, and tumor growth. Oncogene 36(3):293–303. https://doi.org/10.1038/onc.2016.206
Article CAS PubMed Google Scholar
Hernando-Pérez E, Pérez-Riesgo E, Cepeda S, Arrese I, Sarabia R, Villalobos C (2021) Núñez L (2021) Differential Ca2+ responses and store-operated Ca2+ entry in primary cells from human brain tumors. Biochim Biophys Acta Mol Cell Res 1868:119060. https://doi.org/10.1016/j.bbamcr.2021.119060
Article CAS PubMed Google Scholar
Burnstock G (2016) An introduction to the roles of purinergic signaling in neurodegeneration, neuroprotection, and neuroregeneration. Neuropharmacology 104:4–17. https://doi.org/10.1016/j.neuropharm.2015.05.031
Article CAS PubMed Google Scholar
Burnstock G (1976) Purinergic receptors. J Theor Biol 62(2):491–503. https://doi.org/10.1016/0022-5193(76)90133-8
Article CAS PubMed Google Scholar
de Lima AC, Chaves LM, Prestes SN, Mânica A, Cardoso AM (2022) The purinergic signaling and inflammation in the pathogenesis and progression of diabetes: key factors and therapeutic targets. Inflamm Res 71(7–8):759–770. https://doi.org/10.1007/s00011-022-01587-x
Article CAS PubMed Google Scholar
Rodriguez NR, Fortune T, Vuong T, Swartz TH (2023) The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 69:102358. https://doi.org/10.1016/j.coph.2023.102358
Article CAS PubMed PubMed Central Google Scholar
Cheffer A, Castillo ARG, Corrêa-Velloso J, Gonçalves MCB, Naaldijk Y, Nascimento IC, Burnstock G, Ulrich H (2018) Purinergic system in psychiatric diseases. Mol Psychiatry 23(1):94–106. https://doi.org/10.1038/mp.2017.188
Article CAS PubMed Google Scholar
Zimmermann H (2021) History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 187:1114322. https://doi.org/10.1016/j.bcp.2020.114322
Giuliani AL, Sarti AC, Di Virgilio F (2019) Extracellular nucleotides and nucleosides as signaling molecules. Immunol Lett 205:26–24. https://doi.org/10.1016/j.imlet.2018.11.006
Zarrinmayeh H, Territo PR (2020) Purinergic Receptors of the central nervous system: Biology, PET ligands, and their applications. Mol Imaging 19:1536012120927609. https://doi.org/10.1177/1536012120927609
Article CAS PubMed PubMed Central Google Scholar
Engel T, Jiménez-Mateos EM, Diaz-Hernandez M (2022) Purinergic signalling and inflammation-related. Dis Cells 11(23):3748. https://doi.org/10.3390/cells11233748
Gómez Morillas A, Besson VC, Lerouet D (2021) Microglia and Neuroinflammation: What Place for P2RY12? Int J Mol Sci 22(4):1636. https://doi.org/10.3390/ijms22041636
Article CAS PubMed PubMed Central Google Scholar
Dharmajaya R, Sari DK (2021) Role and value of inflammatory markers in brain tumors: A case-controlled study. Ann Med Surg (Lond) 63:102107. https://doi.org/10.1016/j.amsu.2021.01.055
Alghamri MS, McClellan BL, Hartlage CS, Haase S, Faisal SM, Thalli R, Dabaja A, Banerjee K, Carney SV, Mujeeb AA, Olin MR, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG (2021) Targeting neuroinflammation in brain cancer: Uncovering mechanisms, pharmacological targets, and neuropharmaceutical developments. Front Pharmacol 12:680021. https://doi.org/10.3389/fphar.2021.680021
Article CAS PubMed PubMed Central Google Scholar
Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, Galluzzi L (2021) ATP and cancer immunosurveillance. EMBO J 40(13):e108130. https://doi.org/10.15252/embj.2021108130
Article CAS PubMed PubMed Central Google Scholar
Martin S, Dudek-Peric AM, Garg AD, Roose H, Demirsoy S, Van Eygen S, Mertens F, Vangheluwe P, Vankelecom H, Agostinis P (2017) An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAFV600E inhibitor-resistant metastatic melanoma cells. Autophagy 13(9):1512–1527. https://doi.org/10.1080/15548627.2017.1332550
Article CAS PubMed PubMed Central Google Scholar
Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumor progression. Purinergic Signal 14(1):1–18. https://doi.org/10.1007/s11302-017-9593-0
Article CAS PubMed Google Scholar
Olabiyi AA, Passos DF, da Silva JLG, Schetinger MRC, Rosa Leal DB (2021) Role of purinergic system and vitamin D in the anticancer immune response. Life Sci 287:120110. https://doi.org/10.1016/j.lfs.2021.120110
Article CAS PubMed Google Scholar
Leve S, Wirsdörfer F, Jendrossek V (2019) Targeting the immunomodulatory CD73/Adenosine system to improve the therapeutic gain of radiotherapy. Front Immunol 10:698. https://doi.org/10.3389/fimmu.2019.00698
Article CAS PubMed PubMed Central Google Scholar
Azambuja JH, Gelsleichter NE, Beckenkamp LR, Iser IC, Fernandes MC, Figueiró F, Battastini AMO, Scholl JN, de Oliveira FH, Spanevello RM, Sévigny J, Wink MR, Stefani MA, Teixeira HF, Braganhol E (2019) CD73 downregulation decreases In Vitro and In Vivo glioblastoma growth. Mol Neurobiol 56(5):3260–3279. https://doi.org/10.1007/s12035-018-1240-4
Article CAS PubMed Google Scholar
Gao ZW, Yang L, Liu C, Wang X, Guo WT, Zhang HZ, Dong K (2022) Distinct roles of adenosine deaminase isoenzymes ADA1 and ADA2: A pan-cancer analysis. Front Immunol V.13. https://doi.org/10.3389/fimmu.2022.903461
Zhulai G, Oleinik E, Shibaev M, Ignatev K (2022) Adenosine-metabolizing enzymes, adenosine kinase and adenosine deaminase. Cancer Biomol 12(3):418. https://doi.org/10.3390/biom12030418
Vargas P, Scheffel TB, Diz FM, Rockenbach L, Grave N, Cappellari AR, Kist LW, Bogo MR, Thomé MP, Leal GF, de Fraga DA, Figueiró F, Filippi-Chiela EC, Lenz G, Morrone FB (2022) P2Y12 receptor antagonism inhibits proliferation, migration and leads to autophagy of glioblastoma cells. Purinergic Signal 18(4):481–494. https://doi.org/10.1007/s11302-022-09888-w
Article CAS PubMed PubMed Central Google Scholar
Monif M, O’Brien TJ, Drummond KJ et al (2014) P2X7 receptors are a potential novel target for anti-glioma therapies. J Inflamm 11:25. https://doi.org/10.1186/s12950-014-0025-4
Kan LK, Drill M, Jayakrishnan PC, Sequeira RP, Galea E, Todaro M, Sanfilippo PG, Hunn M, Williams DA, O’Brien TJ, Drummond KJ, Monif M (2023) P2X7 receptor antagonism by AZ10606120 significantly reduced in vitro tumor growth in human glioblastoma. Sci Rep 13(1):8435. https://doi.org/10.1038/s41598-023-35712-5
Comments (0)