Purines and purinergic receptors in primary tumors of the central nervous system

Salari N, Ghasemi H, Fatahian R, Mansouri K, Dokaneheifard S, Shiri MH, Hemmati M, Mohammadi M (2023) The global prevalence of primary central nervous system tumors: a systematic review and meta-analysis. Eur J Med Res 28(1):39. https://doi.org/10.1186/s40001-023-01011-y

Article  PubMed  PubMed Central  Google Scholar 

World Health Organization (2020) Brain, central nervous system. IOP Publishing PhysicsWeb.https://gco.iarc.fr/today/data/factsheets/cancers/31-Brain-central-nervous-system-fact-sheet.pdf. Accessed 26 June 2023

Ostrom QT, Francis SS, Barnholtz-Sloan JS (2021) Epidemiology of brain and other CNS tumors. Curr Neurol Neurosci Rep 21(12):68. https://doi.org/10.1007/s11910-021-01152-9

Article  PubMed  PubMed Central  Google Scholar 

Oyefiade A, Paltin I, De Luca CR, Hardy KK, Grosshans DR, Chintagumpala M, Mabbott DJ, Kahalley LS (2021) Cognitive risk in survivors of pediatric brain tumors. J Clin Oncol 39(16):1718–1726. https://doi.org/10.1200/JCO.20.02338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors, and tumor growth. Oncogene 36(3):293–303. https://doi.org/10.1038/onc.2016.206

Article  CAS  PubMed  Google Scholar 

Hernando-Pérez E, Pérez-Riesgo E, Cepeda S, Arrese I, Sarabia R, Villalobos C (2021) Núñez L (2021) Differential Ca2+ responses and store-operated Ca2+ entry in primary cells from human brain tumors. Biochim Biophys Acta Mol Cell Res 1868:119060. https://doi.org/10.1016/j.bbamcr.2021.119060

Article  CAS  PubMed  Google Scholar 

Burnstock G (2016) An introduction to the roles of purinergic signaling in neurodegeneration, neuroprotection, and neuroregeneration. Neuropharmacology 104:4–17. https://doi.org/10.1016/j.neuropharm.2015.05.031

Article  CAS  PubMed  Google Scholar 

Burnstock G (1976) Purinergic receptors. J Theor Biol 62(2):491–503. https://doi.org/10.1016/0022-5193(76)90133-8

Article  CAS  PubMed  Google Scholar 

de Lima AC, Chaves LM, Prestes SN, Mânica A, Cardoso AM (2022) The purinergic signaling and inflammation in the pathogenesis and progression of diabetes: key factors and therapeutic targets. Inflamm Res 71(7–8):759–770. https://doi.org/10.1007/s00011-022-01587-x

Article  CAS  PubMed  Google Scholar 

Rodriguez NR, Fortune T, Vuong T, Swartz TH (2023) The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 69:102358. https://doi.org/10.1016/j.coph.2023.102358

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheffer A, Castillo ARG, Corrêa-Velloso J, Gonçalves MCB, Naaldijk Y, Nascimento IC, Burnstock G, Ulrich H (2018) Purinergic system in psychiatric diseases. Mol Psychiatry 23(1):94–106. https://doi.org/10.1038/mp.2017.188

Article  CAS  PubMed  Google Scholar 

Zimmermann H (2021) History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 187:1114322. https://doi.org/10.1016/j.bcp.2020.114322

Article  CAS  Google Scholar 

Giuliani AL, Sarti AC, Di Virgilio F (2019) Extracellular nucleotides and nucleosides as signaling molecules. Immunol Lett 205:26–24. https://doi.org/10.1016/j.imlet.2018.11.006

Article  CAS  Google Scholar 

Zarrinmayeh H, Territo PR (2020) Purinergic Receptors of the central nervous system: Biology, PET ligands, and their applications. Mol Imaging 19:1536012120927609. https://doi.org/10.1177/1536012120927609

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engel T, Jiménez-Mateos EM, Diaz-Hernandez M (2022) Purinergic signalling and inflammation-related. Dis Cells 11(23):3748. https://doi.org/10.3390/cells11233748

Article  Google Scholar 

Gómez Morillas A, Besson VC, Lerouet D (2021) Microglia and Neuroinflammation: What Place for P2RY12? Int J Mol Sci 22(4):1636. https://doi.org/10.3390/ijms22041636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dharmajaya R, Sari DK (2021) Role and value of inflammatory markers in brain tumors: A case-controlled study. Ann Med Surg (Lond) 63:102107. https://doi.org/10.1016/j.amsu.2021.01.055

Article  PubMed  Google Scholar 

Alghamri MS, McClellan BL, Hartlage CS, Haase S, Faisal SM, Thalli R, Dabaja A, Banerjee K, Carney SV, Mujeeb AA, Olin MR, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG (2021) Targeting neuroinflammation in brain cancer: Uncovering mechanisms, pharmacological targets, and neuropharmaceutical developments. Front Pharmacol 12:680021. https://doi.org/10.3389/fphar.2021.680021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, Galluzzi L (2021) ATP and cancer immunosurveillance. EMBO J 40(13):e108130. https://doi.org/10.15252/embj.2021108130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin S, Dudek-Peric AM, Garg AD, Roose H, Demirsoy S, Van Eygen S, Mertens F, Vangheluwe P, Vankelecom H, Agostinis P (2017) An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAFV600E inhibitor-resistant metastatic melanoma cells. Autophagy 13(9):1512–1527. https://doi.org/10.1080/15548627.2017.1332550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumor progression. Purinergic Signal 14(1):1–18. https://doi.org/10.1007/s11302-017-9593-0

Article  CAS  PubMed  Google Scholar 

Olabiyi AA, Passos DF, da Silva JLG, Schetinger MRC, Rosa Leal DB (2021) Role of purinergic system and vitamin D in the anticancer immune response. Life Sci 287:120110. https://doi.org/10.1016/j.lfs.2021.120110

Article  CAS  PubMed  Google Scholar 

Leve S, Wirsdörfer F, Jendrossek V (2019) Targeting the immunomodulatory CD73/Adenosine system to improve the therapeutic gain of radiotherapy. Front Immunol 10:698. https://doi.org/10.3389/fimmu.2019.00698

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azambuja JH, Gelsleichter NE, Beckenkamp LR, Iser IC, Fernandes MC, Figueiró F, Battastini AMO, Scholl JN, de Oliveira FH, Spanevello RM, Sévigny J, Wink MR, Stefani MA, Teixeira HF, Braganhol E (2019) CD73 downregulation decreases In Vitro and In Vivo glioblastoma growth. Mol Neurobiol 56(5):3260–3279. https://doi.org/10.1007/s12035-018-1240-4

Article  CAS  PubMed  Google Scholar 

Gao ZW, Yang L, Liu C, Wang X, Guo WT, Zhang HZ, Dong K (2022) Distinct roles of adenosine deaminase isoenzymes ADA1 and ADA2: A pan-cancer analysis. Front Immunol V.13. https://doi.org/10.3389/fimmu.2022.903461

Zhulai G, Oleinik E, Shibaev M, Ignatev K (2022) Adenosine-metabolizing enzymes, adenosine kinase and adenosine deaminase. Cancer Biomol 12(3):418. https://doi.org/10.3390/biom12030418

Article  CAS  Google Scholar 

Vargas P, Scheffel TB, Diz FM, Rockenbach L, Grave N, Cappellari AR, Kist LW, Bogo MR, Thomé MP, Leal GF, de Fraga DA, Figueiró F, Filippi-Chiela EC, Lenz G, Morrone FB (2022) P2Y12 receptor antagonism inhibits proliferation, migration and leads to autophagy of glioblastoma cells. Purinergic Signal 18(4):481–494. https://doi.org/10.1007/s11302-022-09888-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monif M, O’Brien TJ, Drummond KJ et al (2014) P2X7 receptors are a potential novel target for anti-glioma therapies. J Inflamm 11:25. https://doi.org/10.1186/s12950-014-0025-4

Article  CAS  Google Scholar 

Kan LK, Drill M, Jayakrishnan PC, Sequeira RP, Galea E, Todaro M, Sanfilippo PG, Hunn M, Williams DA, O’Brien TJ, Drummond KJ, Monif M (2023) P2X7 receptor antagonism by AZ10606120 significantly reduced in vitro tumor growth in human glioblastoma. Sci Rep 13(1):8435. https://doi.org/10.1038/s41598-023-35712-5

Article 

Comments (0)

No login
gif