A2B adenosine receptor signaling and regulation

van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33(5):999–1005. https://doi.org/10.1111/j.1471-4159.1979.tb05236.x

Article  PubMed  Google Scholar 

Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A 77(5):2551–2554. https://doi.org/10.1073/pnas.77.5.2551

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3(1):69–80. https://doi.org/10.1007/BF00734999

Article  CAS  PubMed  Google Scholar 

Brackett LE, Daly JW (1994) Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol 47(5):801–814. https://doi.org/10.1016/0006-2952(94)90480-4

Article  CAS  PubMed  Google Scholar 

Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29(4):331–346

CAS  PubMed  Google Scholar 

Ukena D, Jacobson KA, Kirk KL, Daly JW (1986) A [3H]amine congener of 1,3-dipropyl-8-phenylxanthine. A new radioligand for A2 adenosine receptors of human platelets. FEBS Lett 199(2):269–74. https://doi.org/10.1016/0014-5793(86)80493-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maenhaut C, Van Sande J, Libert F, Abramowicz M, Parmentier M, Vanderhaegen JJ et al (1990) RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Commun 173(3):1169–1178. https://doi.org/10.1016/s0006-291x(05)80909-x

Article  CAS  PubMed  Google Scholar 

Rivkees SA, Reppert SM (1992) RFL9 encodes an A2b-adenosine receptor. Mol Endocrinol 6(10):1598–1604. https://doi.org/10.1210/mend.6.10.1333049

Article  CAS  PubMed  Google Scholar 

Marquardt DL, Walker LL, Heinemann S (1994) Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. J Immunol 152(9):4508–4515

Article  CAS  PubMed  Google Scholar 

Pierce KD, Furlong TJ, Selbie LA, Shine J (1992) Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochem Biophys Res Commun 187(1):86–93. https://doi.org/10.1016/s0006-291x(05)81462-7

Article  CAS  PubMed  Google Scholar 

Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89(16):7432–7436. https://doi.org/10.1073/pnas.89.16.7432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A 90(21):10365–10369. https://doi.org/10.1073/pnas.90.21.10365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao ZG, Auchampach JA, Jacobson KA (2023) Species dependence of A3 adenosine receptor pharmacology and function. Purinergic Signal 19(3):523–550. https://doi.org/10.1007/s11302-022-09910-1

Article  CAS  PubMed  Google Scholar 

Zetterstrom T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett 29(2):111–5. https://doi.org/10.1016/0304-3940(82)90338-x

Article  CAS  PubMed  Google Scholar 

Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49(1):227–231. https://doi.org/10.1111/j.1471-4159.1987.tb03419.x

Article  CAS  PubMed  Google Scholar 

Ballarin M, Fredholm BB, Ambrosio S, Mahy N (1991) Extracellular levels of adenosine and its metabolites in the striatum of awake rats: inhibition of uptake and metabolism. Acta Physiol Scand 142(1):97–103. https://doi.org/10.1111/j.1748-1716.1991.tb09133.x

Article  CAS  PubMed  Google Scholar 

Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14(7):1315–1323. https://doi.org/10.1038/sj.cdd.4402132

Article  CAS  PubMed  Google Scholar 

Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y et al (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106(37):15651–15656. https://doi.org/10.1073/pnas.0904764106

Article  PubMed  PubMed Central  Google Scholar 

Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827. https://doi.org/10.1016/s0898-6568(03)00058-5

Article  CAS  PubMed  Google Scholar 

Baltos JA, Vecchio EA, Harris MA, Qin CX, Ritchie RH, Christopoulos A et al (2017) Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochem Pharmacol 135:79–89. https://doi.org/10.1016/j.bcp.2017.03.014

Article  CAS  PubMed  Google Scholar 

Goulding J, May LT, Hill SJ (2018) Characterisation of endogenous A2A and A2B receptor-mediated cyclic AMP responses in HEK 293 cells using the GloSensor biosensor: evidence for an allosteric mechanism of action for the A2B-selective antagonist PSB 603. Biochem Pharmacol 147:55–66. https://doi.org/10.1016/j.bcp.2017.10.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–52. https://pharmrev.aspetjournals.org/content/53/4/527

Haddad M (2016) The impact of adenosine A2B receptors modulation on nuclear receptors (NR4A) gene expression. Biomed Pharmacol J 9:177–85. https://doi.org/10.13005/bpj/916

Article  Google Scholar 

Haddad M (2014) adenosine receptors machinery and purinergic receptors in rat primary skeletal muscle cells. Biomed Pharmacol J 7:383–98. https://doi.org/10.13005/bpj/503

Article  CAS  Google Scholar 

Feoktistov I, Biaggioni I (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96(4):1979–86. https://doi.org/10.1172/JCI118245

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linden J, Thai T, Figler H, Jin X, Robeva AS (1999) Characterization of human A2B adenosine receptors: radioligand binding, western blotting, and coupling to Gq in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol 56(4):705–713

CAS  PubMed  Google Scholar 

Gao ZG, Inoue A, Jacobson KA (2018) On the G protein-coupling selectivity of the native A2B adenosine receptor. Biochem Pharmacol 151:201–213. https://doi.org/10.1016/j.bcp.2017.12.003

Article  CAS  PubMed  Google Scholar 

Yang X, Xin W, Yang XM, Kuno A, Rich TC, Cohen MV et al (2011) A2B adenosine receptors inhibit superoxide production from mitochondrial complex I in rabbit cardiomyocytes via a mechanism sensitive to Pertussis toxin. Br J Pharmacol 163(5):995–1006. https://doi.org/10.1111/j.1476-5381.2011.01288.x

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif