Revisiting Functional Dysconnectivity: a Review of Three Model Frameworks in Schizophrenia

Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35:509–27.

Article  PubMed  PubMed Central  Google Scholar 

Friston KJ. The disconnection hypothesis. Schizophr Res. 1998;30:115–25.

Article  CAS  PubMed  Google Scholar 

Friston K, Brown HR, Siemerkus J, Stephan KE. The dysconnection hypothesis (2016). Schizophr Res. 2016;176:83–94.

Article  PubMed  PubMed Central  Google Scholar 

Limongi R, Jeon P, Mackinley M, Das T, Dempster K, Théberge J, Bartha R, Wong D, Palaniyappan L. Glutamate and dysconnection in the salience network: neurochemical, effective connectivity, and computational evidence in schizophrenia. Biol Psychiatry. 2020;88:273–81.

Article  CAS  PubMed  Google Scholar 

Giraldo-Chica M, Woodward ND. Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophr Res. 2017;180:58–63.

Article  PubMed  Google Scholar 

Kraguljac NV, Frölich MA, Tran S, White DM, Nichols N, Barton-McArdle A, Reid MA, Bolding MS, Lahti AC. Ketamine modulates hippocampal neurochemistry and functional connectivity: a combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Mol Psychiatry. 2017;22:562–9.

Article  CAS  PubMed  Google Scholar 

Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat Rev Neurosci. 2017;18:727–40.

Article  CAS  PubMed  Google Scholar 

Correll CU, Schooler NR. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat. 2020;16:519–34.

Article  PubMed  PubMed Central  Google Scholar 

McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia—an overview. JAMA Psychiatry. 2020;77:201.

Article  PubMed  Google Scholar 

Andreasen NC. The lifetime trajectory of schizophrenia and the concept of neurodevelopment. Dialogues Clin Neurosci. 2010;12:409–15.

Article  PubMed  PubMed Central  Google Scholar 

Satterthwaite TD, Baker JT. How can studies of resting-state functional connectivity help us understand psychosis as a disorder of brain development? Curr Opin Neurobiol. 2015;30:85–91.

Article  CAS  PubMed  Google Scholar 

Fournier M, Ferrari C, Baumann PS, et al. Impaired metabolic reactivity to oxidative stress in early psychosis patients. Schizophr Bull. 2014;40:973–83.

Article  PubMed  PubMed Central  Google Scholar 

•• Ľupták M, Michaličková D, Fišar Z, Kitzlerová E, Hroudová J. Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets. World J Psychiatry. 2021;11:277–96. This is a seminal paper from which our review adopted the models. Various models including biomarkers of schizophrenia are discussed here.

Article  PubMed  PubMed Central  Google Scholar 

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 1995;34:537–41.

Article  CAS  Google Scholar 

Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P. Neuroimaging in schizophrenia. Neuroimaging Clin N Am. 2020;30:73–83.

Article  PubMed  Google Scholar 

Salman MS, Du Y, Lin D, et al. Group ICA for identifying biomarkers in schizophrenia: ‘adaptive’ networks via spatially constrained ICA show more sensitivity to group differences than spatio-temporal regression. NeuroImage Clin. 2019;22:101747.

Article  PubMed  PubMed Central  Google Scholar 

Calhoun VD, Liu J, Adalı T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage. 2009;45:S163–72.

Article  PubMed  Google Scholar 

Iraji A, Faghiri A, Fu Z, et al. Multi-spatial-scale dynamic interactions between functional sources reveal sex-specific changes in schizophrenia. Netw Neurosci. 2022;6:357–81.

Article  PubMed  PubMed Central  Google Scholar 

Meng X, Iraji A, Fu Z, et al. Multi-model order spatially constrained ICA reveals highly replicable group differences and consistent predictive results from fMRI data. A large N fMRI schizophrenia study. NeuroImage: Clinical. 2022;38:103434. https://doi.org/10.1101/2022.11.02.514809.

Article  Google Scholar 

Hassanzadeh R, Abrol A, Calhoun V. Classification of schizophrenia and Alzheimer’s disease using resting-state functional network connectivity. In: 2022 IEEE-EMBS Int. Conf. Biomed. Health Inform. BHI. Ioannina, Greece: IEEE; 2022. p. 01–4.

Google Scholar 

Du Y, Pearlson GD, Liu J, Sui J, Yu Q, He H, Castro E, Calhoun VD. A group ICA based framework for evaluating resting fMRI markers when disease categories are unclear: application to schizophrenia, bipolar, and schizoaffective disorders. NeuroImage. 2015;122:272–80.

Article  PubMed  Google Scholar 

Shahhosseini Y, Miranda MF. Functional connectivity methods and their applications in fMRI data. Entropy. 2022;24:390.

Article  PubMed  PubMed Central  Google Scholar 

Yu Q, Allen EA, Sui J, Arbabshirani MR, Calhoun VD. Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging. Curr Top Med Chem. 2015;12(21):2415–25.

Google Scholar 

Walther S, Stegmayer K, Federspiel A, Bohlhalter S, Wiest R, Viher PV. Aberrant hyperconnectivity in the motor system at rest is linked to motor abnormalities in schizophrenia spectrum disorders. Schizophr Bull. 2017;43:982–92.

Article  PubMed  PubMed Central  Google Scholar 

Calhoun VD. Functional brain networks in schizophrenia: a review. Front Hum Neurosci. 2009; https://doi.org/10.3389/neuro.09.017.2009.

• Clark SV, Tannahill A, Calhoun VD, Bernard JA, Bustillo J, Turner JA. Weaker cerebellocortical connectivity within sensorimotor and executive networks in schizophrenia compared to healthy controls: relationships with processing speed. Brain Connect. 2020;10:490–503. This paper discusses the link between reduced processing speed and cerebello-cortical connectivity in schizophrenia. We deemed it important given that it is a timely paper with salient findings tying together cognitive deficits and cerebello-cortical connectivity.

Article  PubMed  PubMed Central  Google Scholar 

Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, Savic A, Krystal JH, Pearlson GD, Glahn DC. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24:3116–30.

Article  PubMed  Google Scholar 

Ramsay IS. An Activation Likelihood Estimate meta-analysis of thalamocortical dysconnectivity in psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:859–69.

PubMed  Google Scholar 

Ferri J, Ford JM, Roach BJ, et al. Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychol Med. 2018;48:2492–9.

Article  CAS  PubMed  Google Scholar 

• Benoit LJ, Canetta S, Kellendonk C. Thalamocortical development: a neurodevelopmental framework for schizophrenia. Biol Psychiatry. 2022;92:491–500. This is an important and timely paper that discusses in great detail how the neurodevelopmental framework/model best explains thalamocortical development. We found this to be a crucial paper in explaining the neurodevelopmental deficits in frontal and thalamic dysfunction.

Article  PubMed  PubMed Central  Google Scholar 

Bernard JA, Orr JM, Mittal VA. Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. NeuroImage Clin. 2017;14:622–8.

Article  PubMed  PubMed Central  Google Scholar 

Bernard JA, Goen JRM, Maldonado T. A case for motor network contributions to schizophrenia symptoms: evidence from resting-state connectivity: Motor Networks and Schizophrenia. Hum Brain Mapp. 2017;38:4535–45.

Article  PubMed  PubMed Central  Google Scholar 

Menon B. Towards a new model of understanding – The triple network, psychopathology and the structure of the mind. Med Hypotheses. 2019;133:109385.

Article  PubMed  Google Scholar 

Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

Article  PubMed  Google Scholar 

Tu P-C, Lee Y-C, Chen Y-S, Li C-T, Su T-P. Schizophrenia and the brain’s control network: aberrant within- and between-network connectivity of the frontoparietal network in schizophrenia. Schizophr Res. 2013;147:339–47.

Article  PubMed  Google Scholar 

Hu M-L, Zong X-F, Mann JJ, Zheng J-J, Liao Y-H, Li Z-C, He Y, Chen X-G, Tang J-S. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull. 2017;33:73–84.

Article  CAS  PubMed  Google Scholar 

Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci. 2008;105:12569–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Neill A, Mechelli A, Bhattacharyya S. Dysconnectivity of large-scale functional networks in early psychosis: a meta-analysis. Schizophr Bull. 2019;45:579–90.

Article  PubMed  Google Scholar 

Jiang Y, Duan M, Chen X, Chang X, He H, Li Y, Luo C, Yao D. Common and distinct dysfunctional patterns contribute to triple network model in schizophrenia and depression: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79:302–10.

Article  PubMed  Goog

Comments (0)

No login
gif